【ROS 03】ROS通信机制进阶

上一章内容,主要介绍了ROS通信的实现,内容偏向于粗粒度的通信框架的讲解,没有详细介绍涉及的API,也没有封装代码,鉴于此,本章主要内容如下:

  • ROS常用API介绍;
  • ROS中自定义头文件与源文件的使用。

预期达成的学习目标:

  • 熟练掌握ROS常用API;
  • 掌握ROS中自定义头文件与源文件的配置。

1 常用API

首先,建议参考官方API文档或参考源码:

  • ROS节点的初始化相关API;
  • NodeHandle 的基本使用相关API;
  • 话题的发布方,订阅方对象相关API;
  • 服务的服务端,客户端对象相关API;
  • 时间相关API;
  • 日志输出相关API。

参数服务器相关API在第二章已经有详细介绍和应用,在此不再赘述。

另请参考:

  • APIs - ROS Wiki

  • roscpp: roscpp

1.1 初始化

C++ 

/** @brief ROS初始化函数。
 *
 * 该函数可以解析并使用节点启动时传入的参数(通过参数设置节点名称、命名空间...) 
 *
 * 该函数有多个重载版本,如果使用NodeHandle建议调用该版本。 
 *
 * \param argc 参数个数
 * \param argv 参数列表
 * \param name 节点名称,需要保证其唯一性,不允许包含命名空间
 * \param options 节点启动选项,被封装进了ros::init_options
 *
 */
void init(int &argc, char **argv, const std::string& name, uint32_t options = 0);

【ROS 03】ROS通信机制进阶_第1张图片

 加随机数,避免重名问题。

 Python

def init_node(name, argv=None, anonymous=False, log_level=None, disable_rostime=False, disable_rosout=False, disable_signals=False, xmlrpc_port=0, tcpros_port=0):
    """
    在ROS msater中注册节点

    @param name: 节点名称,必须保证节点名称唯一,节点名称中不能使用命名空间(不能包含 '/')
    @type  name: str

    @param anonymous: 取值为 true 时,为节点名称后缀随机编号
    @type anonymous: bool
    """

【ROS 03】ROS通信机制进阶_第2张图片

1.2 话题与服务相关对象

在 roscpp 中,话题和服务的相关对象一般由 NodeHandle 创建。

NodeHandle有一个重要作用是可以用于设置命名空间,这是后期的重点,但是本章暂不介绍。

【ROS 03】ROS通信机制进阶_第3张图片

1.2.1 发布对象

对象获取:

/**
* \brief 根据话题生成发布对象
*
* 在 ROS master 注册并返回一个发布者对象,该对象可以发布消息
*
* 使用示例如下:
*
*   ros::Publisher pub = handle.advertise("my_topic", 1);
*
* \param topic 发布消息使用的话题
*
* \param queue_size 等待发送给订阅者的最大消息数量
*
* \param latch (optional) 如果为 true,该话题发布的最后一条消息将被保存,并且后期当有订阅者连接时会将该消息发送给订阅者
*
* \return 调用成功时,会返回一个发布对象
*
*
*/
template 
Publisher advertise(const std::string& topic, uint32_t queue_size, bool latch = false)
class Publisher(Topic):
    """
    在ROS master注册为相关话题的发布方
    """

    def __init__(self, name, data_class, subscriber_listener=None, tcp_nodelay=False, latch=False, headers=None, queue_size=None):
        """
        Constructor
        @param name: 话题名称 
        @type  name: str
        @param data_class: 消息类型

        @param latch: 如果为 true,该话题发布的最后一条消息将被保存,并且后期当有订阅者连接时会将该消息发送给订阅者
        @type  latch: bool

        @param queue_size: 等待发送给订阅者的最大消息数量
        @type  queue_size: int

        """

消息发布函数:

/**
* 发布消息          
*/
template 
void publish(const M& message) const
def publish(self, *args, **kwds):
        """
        发布消息
        """

1.2.2 订阅对象

对象获取:

/**
   * \brief 生成某个话题的订阅对象
   *
   * 该函数将根据给定的话题在ROS master 注册,并自动连接相同主题的发布方,每接收到一条消息,都会调用回调
   * 函数,并且传入该消息的共享指针,该消息不能被修改,因为可能其他订阅对象也会使用该消息。
   * 
   * 使用示例如下:

void callback(const std_msgs::Empty::ConstPtr& message)
{
}

ros::Subscriber sub = handle.subscribe("my_topic", 1, callback);

   *
* \param M [template] M 是指消息类型
* \param topic 订阅的话题
* \param queue_size 消息队列长度,超出长度时,头部的消息将被弃用
* \param fp 当订阅到一条消息时,需要执行的回调函数
* \return 调用成功时,返回一个订阅者对象,失败时,返回空对象
* 

void callback(const std_msgs::Empty::ConstPtr& message){...}
ros::NodeHandle nodeHandle;
ros::Subscriber sub = nodeHandle.subscribe("my_topic", 1, callback);
if (sub) // Enter if subscriber is valid
{
...
}

*/
template
Subscriber subscribe(const std::string& topic, uint32_t queue_size, void(*fp)(const boost::shared_ptr&), const TransportHints& transport_hints = TransportHints())
class Subscriber(Topic):
    """
   类注册为指定主题的订阅者,其中消息是给定类型的。
    """
    def __init__(self, name, data_class, callback=None, callback_args=None,
                 queue_size=None, buff_size=DEFAULT_BUFF_SIZE, tcp_nodelay=False):
        """
        Constructor.

        @param name: 话题名称
        @type  name: str
        @param data_class: 消息类型
        @type  data_class: L{Message} class
        @param callback: 处理订阅到的消息的回调函数
        @type  callback: fn(msg, cb_args)

        @param queue_size: 消息队列长度,超出长度时,头部的消息将被弃用

        """

1.2.3 服务对象

对象获取:

/**
* \brief 生成服务端对象
*
* 该函数可以连接到 ROS master,并提供一个具有给定名称的服务对象。
*
* 使用示例如下:
\verbatim
bool callback(std_srvs::Empty& request, std_srvs::Empty& response)
{
return true;
}

ros::ServiceServer service = handle.advertiseService("my_service", callback);
\endverbatim
*
* \param service 服务的主题名称
* \param srv_func 接收到请求时,需要处理请求的回调函数
* \return 请求成功时返回服务对象,否则返回空对象:
\verbatim
bool Foo::callback(std_srvs::Empty& request, std_srvs::Empty& response)
{
return true;
}
ros::NodeHandle nodeHandle;
Foo foo_object;
ros::ServiceServer service = nodeHandle.advertiseService("my_service", callback);
if (service) // Enter if advertised service is valid
{
...
}
\endverbatim

*/
template
ServiceServer advertiseService(const std::string& service, bool(*srv_func)(MReq&, MRes&))
class Service(ServiceImpl):
    """
     声明一个ROS服务

    使用示例::
      s = Service('getmapservice', GetMap, get_map_handler)
    """

    def __init__(self, name, service_class, handler,
                 buff_size=DEFAULT_BUFF_SIZE, error_handler=None):
        """

        @param name: 服务主题名称 ``str``
        @param service_class:服务消息类型

        @param handler: 回调函数,处理请求数据,并返回响应数据

        @type  handler: fn(req)->resp

        """

1.2.4 客户端对象

对象获取:

/** 
  * @brief 创建一个服务客户端对象
  *
  * 当清除最后一个连接的引用句柄时,连接将被关闭。
  *
  * @param service_name 服务主题名称
  */
 template
 ServiceClient serviceClient(const std::string& service_name, bool persistent = false, 
                             const M_string& header_values = M_string())
class ServiceProxy(_Service):
    """
   创建一个ROS服务的句柄

    示例用法::
      add_two_ints = ServiceProxy('add_two_ints', AddTwoInts)
      resp = add_two_ints(1, 2)
    """

    def __init__(self, name, service_class, persistent=False, headers=None):
        """
        ctor.
        @param name: 服务主题名称
        @type  name: str
        @param service_class: 服务消息类型
        @type  service_class: Service class
        """

请求发送函数:

/**
   * @brief 发送请求
   * 返回值为 bool 类型,true,请求处理成功,false,处理失败。
   */
  template
  bool call(Service& service)
def call(self, *args, **kwds):
        """
        发送请求,返回值为响应数据


        """

等待服务函数1:

/**
 * ros::service::waitForService("addInts");
 * \brief 等待服务可用,否则一致处于阻塞状态
 * \param service_name 被"等待"的服务的话题名称
 * \param timeout 等待最大时常,默认为 -1,可以永久等待直至节点关闭
 * \return 成功返回 true,否则返回 false。
 */
ROSCPP_DECL bool waitForService(const std::string& service_name, ros::Duration timeout = ros::Duration(-1));

等待服务函数2:

/**
* client.waitForExistence();
* \brief 等待服务可用,否则一致处于阻塞状态
* \param timeout 等待最大时常,默认为 -1,可以永久等待直至节点关闭
* \return 成功返回 true,否则返回 false。
*/
bool waitForExistence(ros::Duration timeout = ros::Duration(-1));
def wait_for_service(service, timeout=None):
    """
    调用该函数时,程序会处于阻塞状态直到服务可用
    @param service: 被等待的服务话题名称
    @type  service: str
    @param timeout: 超时时间
    @type  timeout: double|rospy.Duration
    """

1.3 回旋函数

在ROS程序中,频繁的使用了 ros::spin() 和 ros::spinOnce() 两个回旋函数,可以用于处理回调函数。

1.3.1 spinOnce()

/**
 * \brief 处理一轮回调
 *
 * 一般应用场景:
 *     在循环体内,处理所有可用的回调函数
 * 
 */
ROSCPP_DECL void spinOnce();

1.3.2 spin()

C++:

/** 
 * \brief 进入循环处理回调 
 */
ROSCPP_DECL void spin();

相同点:二者都用于处理回调函数

不同点: ros::spin() 是进入了循环执行回调函数,而 ros::spinOnce() 只会执行一次回调函数(没有循环),在 ros::spin() 后的语句不会执行到,而 ros::spinOnce() 后的语句可以执行。

Python:

def spin():
    """
    进入循环处理回调 
    """

1.4 时间

        ROS中时间相关的API是极其常用,比如:获取当前时刻、持续时间的设置、执行频率、休眠、定时器...都与时间相关。

1.4.1 时刻

        获取时刻,或是设置指定时刻:

ros::init(argc,argv,"hello_time");
ros::NodeHandle nh;//必须创建句柄,否则时间没有初始化,导致后续API调用失败
ros::Time right_now = ros::Time::now();//将当前时刻封装成对象
ROS_INFO("当前时刻:%.2f",right_now.toSec());//获取距离 1970年01月01日 00:00:00 的秒数
ROS_INFO("当前时刻:%d",right_now.sec);//获取距离 1970年01月01日 00:00:00 的秒数

ros::Time someTime(100,100000000);// 参数1:秒数  参数2:纳秒
ROS_INFO("时刻:%.2f",someTime.toSec()); //100.10
ros::Time someTime2(100.3);//直接传入 double 类型的秒数
ROS_INFO("时刻:%.2f",someTime2.toSec()); //100.30
# 获取当前时刻
right_now = rospy.Time.now()
rospy.loginfo("当前时刻:%.2f",right_now.to_sec())
rospy.loginfo("当前时刻:%.2f",right_now.to_nsec())
# 自定义时刻
some_time1 = rospy.Time(1234.567891011)
some_time2 = rospy.Time(1234,567891011)
rospy.loginfo("设置时刻1:%.2f",some_time1.to_sec())
rospy.loginfo("设置时刻2:%.2f",some_time2.to_sec())

# 从时间创建对象
# some_time3 = rospy.Time.from_seconds(543.21)
some_time3 = rospy.Time.from_sec(543.21) # from_sec 替换了 from_seconds
rospy.loginfo("设置时刻3:%.2f",some_time3.to_sec())

1.4.2 持续时间

设置一个时间区间(间隔):

ROS_INFO("当前时刻:%.2f",ros::Time::now().toSec());
ros::Duration du(10);//持续10秒钟,参数是double类型的,以秒为单位
du.sleep();//按照指定的持续时间休眠
ROS_INFO("持续时间:%.2f",du.toSec());//将持续时间换算成秒
ROS_INFO("当前时刻:%.2f",ros::Time::now().toSec());
# 持续时间相关API
rospy.loginfo("持续时间测试开始.....")
du = rospy.Duration(3.3)
rospy.loginfo("du1 持续时间:%.2f",du.to_sec())
rospy.sleep(du) #休眠函数
rospy.loginfo("持续时间测试结束.....")

1.4.3 持续时间与时刻运算

为了方便使用,ROS中提供了时间与时刻的运算:

ROS_INFO("时间运算");
ros::Time now = ros::Time::now();
ros::Duration du1(10);
ros::Duration du2(20);
ROS_INFO("当前时刻:%.2f",now.toSec());
//1.time 与 duration 运算
ros::Time after_now = now + du1;
ros::Time before_now = now - du1;
ROS_INFO("当前时刻之后:%.2f",after_now.toSec());
ROS_INFO("当前时刻之前:%.2f",before_now.toSec());

//2.duration 之间相互运算
ros::Duration du3 = du1 + du2;
ros::Duration du4 = du1 - du2;
ROS_INFO("du3 = %.2f",du3.toSec());
ROS_INFO("du4 = %.2f",du4.toSec());
//PS: time 与 time 不可以运算
// ros::Time nn = now + before_now;//异常
rospy.loginfo("时间运算")
now = rospy.Time.now()
du1 = rospy.Duration(10)
du2 = rospy.Duration(20)
rospy.loginfo("当前时刻:%.2f",now.to_sec())
before_now = now - du1
after_now = now + du1
dd = du1 + du2
# now = now + now #非法
rospy.loginfo("之前时刻:%.2f",before_now.to_sec())
rospy.loginfo("之后时刻:%.2f",after_now.to_sec())
rospy.loginfo("持续时间相加:%.2f",dd.to_sec())

1.4.4 设置运行频率

ros::Rate rate(1);//指定频率
while (true)
{
    ROS_INFO("-----------code----------");
    rate.sleep();//休眠,休眠时间 = 1 / 频率。
}
# 设置执行频率
rate = rospy.Rate(0.5)
while not rospy.is_shutdown():
    rate.sleep() #休眠
    rospy.loginfo("+++++++++++++++")

1.4.5 定时器

ROS 中内置了专门的定时器,可以实现与 ros::Rate 类似的效果:

ros::NodeHandle nh;//必须创建句柄,否则时间没有初始化,导致后续API调用失败

 // ROS 定时器
 /**
* \brief 创建一个定时器,按照指定频率调用回调函数。
*
* \param period 时间间隔
* \param callback 回调函数
* \param oneshot 如果设置为 true,只执行一次回调函数,设置为 false,就循环执行。
* \param autostart 如果为true,返回已经启动的定时器,设置为 false,需要手动启动。
*/
 //Timer createTimer(Duration period, const TimerCallback& callback, bool oneshot = false,
 //                bool autostart = true) const;

 // ros::Timer timer = nh.createTimer(ros::Duration(0.5),doSomeThing);
 ros::Timer timer = nh.createTimer(ros::Duration(0.5),doSomeThing,true);//只执行一次

 // ros::Timer timer = nh.createTimer(ros::Duration(0.5),doSomeThing,false,false);//需要手动启动
 // timer.start();
 ros::spin(); //必须 spin
#定时器设置
"""    
def __init__(self, period, callback, oneshot=False, reset=False):
    Constructor.
    @param period: 回调函数的时间间隔
    @type  period: rospy.Duration
    @param callback: 回调函数
    @type  callback: function taking rospy.TimerEvent
    @param oneshot: 设置为True,就只执行一次,否则循环执行
    @type  oneshot: bool
    @param reset: if True, timer is reset when rostime moved backward. [default: False]
    @type  reset: bool
"""
rospy.Timer(rospy.Duration(1),doMsg)
# rospy.Timer(rospy.Duration(1),doMsg,True) # 只执行一次
rospy.spin()

定时器的回调函数:

void doSomeThing(const ros::TimerEvent &event){
    ROS_INFO("-------------");
    ROS_INFO("event:%s",std::to_string(event.current_real.toSec()).c_str());
}
def doMsg(event):
    rospy.loginfo("+++++++++++")
    rospy.loginfo("当前时刻:%s",str(event.current_real))

1.5 其他函数

在发布实现时,一般会循环发布消息,循环的判断条件一般由节点状态来控制,C++中可以通过 ros::ok() 来判断节点状态是否正常,而 python 中则通过 rospy.is_shutdown() 来实现判断,导致节点退出的原因主要有如下几种:

  • 节点接收到了关闭信息,比如常用的 ctrl + c 快捷键就是关闭节点的信号;
  • 同名节点启动,导致现有节点退出;
  • 程序中的其他部分调用了节点关闭相关的API(C++中是ros::shutdown(),python中是rospy.signal_shutdown())

另外,日志相关的函数也是极其常用的,在ROS中日志被划分成如下级别:

  • DEBUG(调试):只在调试时使用,此类消息不会输出到控制台;
  • INFO(信息):标准消息,一般用于说明系统内正在执行的操作;
  • WARN(警告):提醒一些异常情况,但程序仍然可以执行;
  • ERROR(错误):提示错误信息,此类错误会影响程序运行;
  • FATAL(严重错误):此类错误将阻止节点继续运行。

1.5.1 节点状态判断

/** \brief 检查节点是否已经退出
 *
 *  ros::shutdown() 被调用且执行完毕后,该函数将会返回 false
 *
 * \return true 如果节点还健在, false 如果节点已经火化了。
 */
bool ok();
def is_shutdown():
    """
    @return: True 如果节点已经被关闭
    @rtype: bool
    """

【ROS 03】ROS通信机制进阶_第4张图片

1.5.2 节点关闭函数

/*
*   关闭节点
*/
void shutdown();
def signal_shutdown(reason):
    """
    关闭节点
    @param reason: 节点关闭的原因,是一个字符串
    @type  reason: str
    """
def on_shutdown(h):
    """
    节点被关闭时调用的函数
    @param h: 关闭时调用的回调函数,此函数无参
    @type  h: fn()
    """

【ROS 03】ROS通信机制进阶_第5张图片

1.5.3 日志函数

ROS_DEBUG("hello,DEBUG"); //不会输出
ROS_INFO("hello,INFO"); //默认白色字体
ROS_WARN("Hello,WARN"); //默认黄色字体
ROS_ERROR("hello,ERROR");//默认红色字体
ROS_FATAL("hello,FATAL");//默认红色字体

【ROS 03】ROS通信机制进阶_第6张图片

rospy.logdebug("hello,debug")  #不会输出
rospy.loginfo("hello,info")  #默认白色字体
rospy.logwarn("hello,warn")  #默认黄色字体
rospy.logerr("hello,error")  #默认红色字体
rospy.logfatal("hello,fatal") #默认红色字体

2 ROS中的头文件与源文件

本节主要介绍ROS的C++实现中,如何使用头文件与源文件的方式封装代码,具体内容如下:

  1. 设置头文件,可执行文件作为源文件;
  2. 分别设置头文件,源文件与可执行文件。

在ROS中关于头文件的使用,核心内容在于CMakeLists.txt文件的配置,不同的封装方式,配置上也有差异。

2.1 自定义头文件调用

需求:设计头文件,可执行文件本身作为源文件。

流程:

  1. 编写头文件;
  2. 编写可执行文件(同时也是源文件);
  3. 编辑配置文件并执行。

2.1.1 头文件

在功能包下的 include/功能包名 目录下新建头文件: hello.h,示例内容如下:

#ifndef _HELLO_H
#define _HELLO_H

namespace hello_ns{

class HelloPub {

public:
    void run();
};

}

#endif

【ROS 03】ROS通信机制进阶_第7张图片

注意:

在 VScode 中,为了后续包含头文件时不抛出异常,请配置 .vscode 下 c_cpp_properties.json 的 includepath属性

"/home/用户/工作空间/src/功能包/include/**"

【ROS 03】ROS通信机制进阶_第8张图片

2.1.2 可执行文件

在 src 目录下新建文件:hello.cpp,示例内容如下:

#include "ros/ros.h"
#include "test_head/hello.h"

namespace hello_ns {

void HelloPub::run(){
    ROS_INFO("自定义头文件的使用....");
}

}

int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    ros::init(argc,argv,"test_head_node");
    hello_ns::HelloPub helloPub;
    helloPub.run();
    return 0;
}

【ROS 03】ROS通信机制进阶_第9张图片

2.1.3 配置文件

配置CMakeLists.txt文件,头文件相关配置如下:

include_directories(
include
  ${catkin_INCLUDE_DIRS}
)

【ROS 03】ROS通信机制进阶_第10张图片

可执行配置文件配置方式与之前一致:

add_executable(hello src/hello.cpp)

add_dependencies(hello ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})

target_link_libraries(hello
  ${catkin_LIBRARIES}
)

最后,编译并执行,控制台可以输出自定义的文本信息。

2.2 自定义源文件调用

需求:设计头文件与源文件,在可执行文件中包含头文件。

流程:

  1. 编写头文件;
  2. 编写源文件;
  3. 编写可执行文件;
  4. 编辑配置文件并执行。

2.2.1 头文件

头文件设置于 3.2.1 类似,在功能包下的 include/功能包名 目录下新建头文件: haha.h,示例内容如下:

#ifndef _HAHA_H
#define _HAHA_H

namespace hello_ns {

class My {

public:
    void run();

};

}

#endif

注意:

在 VScode 中,为了后续包含头文件时不抛出异常,请配置 .vscode 下 c_cpp_properties.json 的 includepath属性

"/home/用户/工作空间/src/功能包/include/**"

2.2.2 源文件

在 src 目录下新建文件:haha.cpp,示例内容如下:

#include "test_head_src/haha.h"
#include "ros/ros.h"

namespace hello_ns{

void My::run(){
    ROS_INFO("hello,head and src ...");
}

}

2.2.3 可执行文件

在 src 目录下新建文件: use_head.cpp,示例内容如下:

#include "ros/ros.h"
#include "test_head_src/haha.h"

int main(int argc, char *argv[])
{
    ros::init(argc,argv,"hahah");
    hello_ns::My my;
    my.run();
    return 0;
}

【ROS 03】ROS通信机制进阶_第11张图片

2.2.4 配置文件

头文件与源文件相关配置:

include_directories(
include
  ${catkin_INCLUDE_DIRS}
)

## 声明C++库
add_library(head
  include/test_head_src/haha.h
  src/haha.cpp
)

add_dependencies(head ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})

target_link_libraries(head
  ${catkin_LIBRARIES}
)

【ROS 03】ROS通信机制进阶_第12张图片

可执行文件配置:

add_executable(use_head src/use_head.cpp)

add_dependencies(use_head ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})

#此处需要添加之前设置的 head 库
target_link_libraries(use_head
  head
  ${catkin_LIBRARIES}
)

 【ROS 03】ROS通信机制进阶_第13张图片

3 Python模块导入

与C++类似的,在Python中导入其他模块时,也需要相关处理。

需求:首先新建一个Python文件A,再创建Python文件UseA,在UseA中导入A并调用A的实现。

实现:

  1. 新建两个Python文件,使用 import 实现导入关系;
  2. 添加可执行权限、编辑配置文件并执行UseA。

3.1 新建两个Python文件并使用import导入

文件A实现(包含一个变量):

#! /usr/bin/env python
num = 1000

【ROS 03】ROS通信机制进阶_第14张图片

文件B核心实现:

import os
import sys

path = os.path.abspath(".")
# 核心
sys.path.insert(0,path + "/src/plumbing_pub_sub/scripts")

import tools

....
....
    rospy.loginfo("num = %d",tools.num)

【ROS 03】ROS通信机制进阶_第15张图片

一定要加path,因为rosrun的路径不是从当前目录找的。

3.2 添加可执行权限,编辑配置文件并执行

此过程略。

你可能感兴趣的:(ROS,机器人)