- 基于深度学习的极端天气预测全解析与实战指南:基于MetNet 模型
AI_DL_CODE
深度学习人工智能MetNet天气预测python
摘要:本文全面解析了基于深度学习的极端天气预测,重点介绍了MetNet模型。首先,文章阐述了极端天气预测的重要性和传统天气预报的局限性。接着,详细介绍了MetNet模型的基本架构、特点以及与其他气象预测模型的对比。然后,通过实战案例展示了MetNet模型在极端降雨天气预测中的应用,包括数据准备、模型搭建与训练、模型评估与预测。最后,文章总结了MetNet模型的优势与挑战,并展望了深度学习在气象领域
- 深度解析:Python与TensorFlow在日平均气温预测中的应用——LSTM神经网络实战
AI_DL_CODE
python神经网络tensorflowLSTM气温预测RNN
文章目录1.引言1.1研究背景与意义1.2研究目标与问题定义2.概念解析2.1Python语言简介2.2TensorFlow框架概述2.3LSTM神经网络原理3.原理详解3.1时间序列分析基础3.1.1时间序列的组成3.1.2时间序列分析方法3.2LSTM在时间序列分析中的应用3.2.1LSTM的优势3.2.2LSTM的结构3.3日平均气温预测的数学模型3.3.1ARIMA模型3.3.2LSTM模
- MPP-大规模并行处理
quanzaiwoxin1
1、什么是MPP?MPP(MassivelyParallelProcessing),即大规模并行处理,在数据库非共享集群中,每个节点都有独立的磁盘存储系统和内存系统,业务数据根据数据库模型和应用特点划分到各个节点上,每台数据节点通过专用网络或者商业通用网络互相连接,彼此协同计算,作为整体提供数据库服务。非共享数据库集群有完全的可伸缩性、高可用、高性能、优秀的性价比、资源共享等优势。简单来说,MPP
- 国自然青年项目|基于多模态影像组学的乳腺癌分子分型预测研究|基金申请·25-01-20
罗小罗同学
基金申请医学人工智能人工智能国自然
小罗碎碎念今天和大家分享一份国自然青年项目,项目执行期为2021-2023年,直接费用为24万。项目聚焦乳腺癌分子分型预测,综合运用多模态组学数据、影像组学技术和深度学习技术。研究内容包括跨模态医学图像分割、多模态特征提取与融合、模型设计与系统研发。通过提出一系列创新算法,如基于类别中心原型对齐器的图像分割算法、基于自注意力机制与生成对抗网络的聚类算法等,实现了对乳腺癌分子分型的高精度预测,并开发
- 文献综述相关ChatGPT提示词分享
AIWritePaper官方账号
PromptChatGPTAIWritePaperchatgpt人工智能数据分析AIGC信息可视化数据挖掘prompt
文献综述ChatGPT可以帮助提高文献综述的有效性和全面性。ChatGPT可以高效搜索和审查与宝子们课题研究相关的文献资料来源。一些给力的插件工具还可以帮助您总结复杂的研究论文并提取信息以更快更好地消化信息。合理的运用ChatGPT和GPTs可以提高文献综述的清晰度和质量,使其更加全面和有洞察力。文献综述提示词*131.在[人工智能相关]领域中,主要发现有哪些?2.在[人工智能相关]领域中,引用次
- 一文学习python中编码和解码
科雷learning
python编程python开发语言
学习目录1什么是编码和解码2编解码基本原理3python的默认编码4什么是10进制/2进制/8进制/16进制?5python的字符串编解码5.1使用str.encode()编码,str.decode()解码5.2解码的乱码问题5.316进制字符串转为普通字符串6python字符串和unicode类型编码转换什么是编码和解码大家都知道计算机是二进制的世界,计算机系统只能识别数字0和1组成的一串串的数
- 使用 PyTorch 从头开始构建您自己的 Llama 3 架构
子然在打码
pytorchllama人工智能
https://www.aisolink.com/build-your-own-llama-3-architecture-from-scratch-using-pytorch全文摘要本文提供了一个详细的指南,介绍如何使用PyTorch从头开始构建Llama3模型的完整架构,并对自定义数据集进行训练和推理。文章涵盖了构建输入块、解码器块和输出块的步骤,并提供了相应的代码示例。最终目标是构建一个功能齐
- 大模型的RAG微调与Agent:提升智能代理的效率与效果
WeeJot
人工智能人工智能
目录编辑引言RAG模型概述检索阶段生成阶段RAG模型的微调数据集选择损失函数设计微调策略超参数调整RAG模型在智能代理中的应用客户服务信息检索内容创作决策支持:结论引言在人工智能的快速发展中,大型预训练模型(LLMs)已经成为推动技术进步的关键力量。这些模型通过在海量数据上的预训练,掌握了丰富的语言知识和模式识别能力,从而在多种自然语言处理任务上展现出卓越的性能。然而,预训练模型的通用性也意味着它
- 深入浅出的聊聊 Agent
程序员鑫港
人工智能数据库知识图谱深度学习机器学习
今天,我想和你一起聊聊Agent(智能体),从它的起源、特点,到关键的知识点,以及现实中的应用和实现原理。希望能帮助你更深入地了解这个既有趣又重要的领域。前排提示,文末有大模型AGI-CSDN独家资料包哦!一、Agent的起源1.什么是Agent你可能会问,Agent到底是什么呢?简单来说,Agent就是能够在一定环境中自主感知、决策和行动的实体。它可以是一个软件程序、一个机器人,甚至是一个复杂的
- 交换机与路由器的区别
黑石云
边缘计算
交换机和路由器是网络中的两种关键设备,它们各自承担不同的功能,主要区别体现在以下几个方面:一、工作层次与功能交换机:工作层次:交换机主要工作在OSI模型的第二层,即数据链路层。功能:交换机用于在局域网(LAN)内的不同设备之间进行数据的转发和交换。它通过学习和转发数据帧的方式来实现多个设备之间的通信,能够根据数据包的MAC地址进行数据的无冲突传输,提高网络传输的效率和稳定性。路由器:工作层次:路由
- 【LLM】Ollama:本地大模型 WebAPI 调用
T0uken
python开发语言
Ollama快速部署安装Docker:从Docker官网下载并安装。部署Ollama:使用以下命令进行部署:dockerrun-d-p11434:11434--nameollama--restartalwaysollama/ollama:latest进入容器并下载qwen2.5:0.5b模型:进入Ollama容器:dockerexec-itollamabash在容器内下载模型:ollamapull
- Redis架构
zyz176
Redis架构Redis是一个单线程的架构单线程和多线程:单线程效率低,安全多线程效率高,有线程安全问题简化了数据结构和算法的实现:Redis采用了事件模型的机制I/O多路复用机制(Linux处理文件读取的机制)单线程异步回调:node.jsRedis是一个单线程,为什么效率还这么高?redis是基于内存的,他的读取速度本身就很快使用单线程,避免了cpu对线程的切换,在一点程度上提高了效率redi
- YOLOv10改进,YOLOv10改进主干网络为GhostNetV3(2024年华为的轻量化架构,全网首发),助力涨点
挂科边缘
YOLOv10改进YOLO计算机视觉目标检测人工智能python深度学习
摘要GhostNetV3是由华为诺亚方舟实验室的团队发布的,于2024年4月发布。摘要:紧凑型神经网络专为边缘设备上的应用设计,具备更快的推理速度,但性能相对适中。然而,紧凑型模型的训练策略目前借鉴自传统模型,这忽略了它们在模型容量上的差异,可能阻碍紧凑型模型的性能提升。在本文中,通过系统地研究不同训练成分的影响,我们介绍了一种用于紧凑型模型的强大训练策略。我们发现,适当的重参数化和知识蒸馏设计对
- OpenBayes 一周速览|微软 Phi-4 发布,降低更多成本实现高效推理;Terra 时空数据集上线
公共资源速递5个数据集:Terra多模态时空数据集ChineseCouplets中文对联数据集AqueousSolubility无机化合物数据集HumanLikeDPODataset大模型对话微调数据集SentimentandEmotionAnalysisDataset情感情绪分析数据集4个教程:一键部署Phi-4Docling:文档解析神器一键部署QVQ-72B-preview铅笔素描风格文生图
- 2024年AI浪潮:基础设施重构、模型演进与挑战并存
前端
2024年,人工智能领域呈现出蓬勃发展的景象,投资持续增长、基础设施发生变革,技术应用加速落地。各大科技公司和初创企业纷纷涌入,试图在这一充满机遇的领域分一杯羹。本文将深入探讨2024年AI发展的三大核心趋势:AI基础设施的重构、模型发展的新趋势以及AI发展带来的挑战,并重点关注企业如何从AI投资中获得回报,以及AI智能体技术的巨大潜力。选择合适的AI代码生成器将成为企业提升效率的关键。AI基础设
- 使用多模态大模型转换 office 文档
人工智能图像识别
背景介绍随着大模型的技术的不断发展,如何将各种office文档转换为markdown成为了一个刚需,包括微软在内的不少公司都给出了解决方案,但是都需要经过繁琐的步骤再本地或云端进行部署,有的对本地还有一定算力要求。现在各家的多模态大模型都在不断降价,1块钱都能处理几百张图片,不少提供商还每日提供免费额度,所以使用多模态大模型转换office文档成为一个廉价而简单的解决方案。技术方案这里介绍的是使用
- 「AI 中国」榜单揭晓,OpenBayes贝式计算入选「大模型最具潜力创业企业 TOP 10」
日前,「AI中国」机器之心2024年度评选正式揭晓,OpenBayes贝式计算有幸入选「大模型最具潜力创业企业TOP10」。作为专业的人工智能媒体与产业服务平台,机器之心于2017年发布了AI榜单「SyncedMachineIntelligenceAwards」,在随后的时间里,伴随AI的跨越式发展,机器之心的年度评选也逐渐成为了产业风向标之一,覆盖的领域、范围更加广泛,维度更加细化。机器之心20
- FORCE 原动力大会|火山引擎边缘云亮点干货先知晓!
人工智能边缘计算机器人
AI技术战场上,唯快不破?在经历了早期的热闹之后,AI大模型的能力和价值维度已经不再浮于表面。IDC最新发布的《中国智算服务市场(2023下半年)跟踪》报告显示,受国内生成式AI技术飞速发展的影响,GenAI(生成式AI)IaaS市场在2023年实现爆发式增长,在AI+云计算领域有双向积累的公司获得先发优势。火山引擎一跃成为GenAIIaaS领域市场份额最大的云厂商。只有真正实现大模型的深度融合,
- 探索AI API版本管理与流式传输实现
qwe54165a4wd
人工智能java数据库python
在现代软件开发中,API版本管理是一个关键的主题,尤其是在涉及到AIAPI的场景。API版本的变更会影响到服务的稳定性和功能的兼容性。因此,理解API版本管理的基本原理和具体实现,对于开发者来说至关重要。技术背景介绍API版本管理涉及到如何在不破坏现有客户端代码的情况下,逐步引入新的功能和改进。这对于AI服务尤为重要,因为AI模型和算法的更新频率相对较高。本文将重点介绍AIAPI版本的管理原则,并
- OpenBayes 一周速览|一键部署Qwen2.5-Coder,0编程经验实现代码生成自由!
公共资源速递5个数据集:Coil-100图像数据集Muharaf手写阿拉伯文数据集CollectiveActivity集体活动视频数据集MultimodalSpectroscopic化学多模光谱数据集CDFSOD-benchmark跨域小样本对象检测基准数据集3个教程:一键部署Qwen2.5-CoderInkSight将手写文字数字化DemoGLM-4-Voice端到端中英语音对话模型访问官网立即
- 云原生主键模型:高效、弹性,省钱又省心
数据库大数据
作者简介:罗一鑫,StarRocksCommitter,主要负责存储引擎相关的工作。导读:在StarRocks3.3.1版本中,我们推出了云原生持久化索引,旨在解决本地磁盘持久化索引的关键问题。本文将详细探讨其优势,并对比云原生与本地磁盘持久化索引在大批量导入、小批实时导入以及弹性调度等场景中的表现。尤其在弹性调度场景中,云原生架构使延迟性能提升至本地磁盘的10倍。主键模型是StarRocks全新
- 企业落地大模型的路径选择:微调、RAG、提示词工程
AGI-杠哥
深度学习自然语言处理人工智能学习知识图谱
一、大模型的特点1)不确定性与传统应用不同,模型的输出是不确定的,即使多次问它一样的问题,给出的结果也可能不一样。这种特性对于日常应用业务OK,但是如果要在企业内用来处理具体业务问题,就必须提高这个稳定性,否则影响生产经营,例如产线操作人员通过模型获取操作步骤或者参数,如果步骤或者数据不对可能会导致产品出现质量问题等等。2)静态性模型一旦训练好,就无法再补充数据,因此模型不会了解你自己组织内部的年
- ChatGPT 绘图的工作原理
ChatGPT的绘图功能结合了自然语言处理(NLP)和图像生成的技术,这种综合能力依赖于预训练模型(如GPT-4)和图像生成模型(如DALL-E)之间的紧密协作。ChatGPT本质上是一个大规模的语言模型,但通过与图像生成模型集成,它得以执行基于描述生成图像的任务。接下来,我们将从模型架构、训练方法、推理机制和一些技术挑战等方面,详细讨论ChatGPT进行绘图的工作原理。
- Unity文件路径访问总结:从基础到高级的资源加载方法
Unity青子
Unity零基础系列课程unity
在Unity开发中,文件路径的访问和资源加载是开发者经常需要处理的任务。无论是加载纹理、模型、音频,还是读取配置文件,正确地处理路径和资源加载是确保项目顺利运行的关键。本文将以Unity文件路径访问为主线,详细介绍Unity中常见的路径访问方式,并结合代码示例、注意事项以及实际使用场景,帮助开发者更好地理解和使用这些方法。同时,本文还会延伸出更多相关知识,帮助用户举一反三,解决实际开发中的问题。1
- 使用LangChain构建简单LLM翻译应用
fGVBSAbe
langchainjava前端python
技术背景介绍在本教程中,我们将学习如何使用LangChain构建一个简单的语言模型(LLM)应用程序,该应用程序用于将文本从英语翻译成其他语言。虽然这个应用程序比较简单,但它是学习LangChain的一个不错的开始,因为许多复杂功能都可以通过简单的提示和LLM调用构建。核心原理解析LangChain通过链式调用多个组件,使得复杂的语言处理任务变得简单易行。我们将使用LangChain的以下功能:语
- 021:为什么是卷积呢?
董董灿是个攻城狮
计算机视觉保姆级教程人工智能计算机视觉CNN
本文为合集收录,欢迎查看合集/专栏链接进行全部合集的系统学习。合集完整版请查看这里。卷积算法非常重要,但是为什么是卷积呢?在进一步学习之前,先看一看神经网络(或者叫一个AI模型)是如何完成一张图片的推理的。你肯定听说过阿尔法狗大战柯洁的故事,当时新闻一出,不知大家什么反应,反正我是被震撼到了:AI模型竟然学到了那么多的棋谱,而且人类在AI的面前毫无还手可言。但是,你有没有想过一个问题:阿尔法狗学会
- AI Agent的技术选型:从个人项目到企业级应用
人工智能机器学习
说实话,每次有人问我"开发AIAgent应该用什么技术栈?",我都觉得挺难回答的。因为不同的场景,最佳的技术选择可能完全不同。今天就来聊聊我在不同项目中的技术选型经历,希望能给大家一些参考。从个人项目说起去年我开始研究AIAgent的时候,第一个练手项目是给自己做一个代码助手。需求很简单:能读懂我的项目代码,帮我重构和写测试。那时候,我的技术选型是这样的:模型选择:OpenAIGPT-3.5便宜,
- OpenAI进军实体机器人:GPT赋能的智能未来
前端
近年来,人工智能技术飞速发展,深刻地改变着我们的生活。而OpenAI作为人工智能领域的领军者,其最新动作更是引人注目:进军实体机器人领域!这不仅标志着人工智能技术应用场景的重大拓展,也预示着未来智能机器人时代的加速到来。本文将深入探讨OpenAI的实体机器人战略,分析其背后的深层逻辑,并展望其未来发展趋势与挑战。OpenAI的战略布局:从AI模型到实体机器人OpenAI在人工智能领域已取得了令人瞩
- OpenBayes 一周速览|微软 Phi-4 发布,降低更多成本实现高效推理;Terra 时空数据集上线
公共资源速递5个数据集:Terra多模态时空数据集ChineseCouplets中文对联数据集AqueousSolubility无机化合物数据集HumanLikeDPODataset大模型对话微调数据集SentimentandEmotionAnalysisDataset情感情绪分析数据集4个教程:一键部署Phi-4Docling:文档解析神器一键部署QVQ-72B-preview铅笔素描风格文生图
- 2025年全球及中国金刚线开方机行业头部企业市场占有率及排名调研报告
过953
人工智能大数据
金刚线开方机是一种利用金刚线切割技术,专门用于对硅锭进行精确开方处理的自动化设备。该设备通过高碳钢丝或钨丝作为母线,电镀以金刚石磨料,实现高速、高效率的切割过程,从而确保硅片的几何精度和表面光洁度。金刚线开方机以其卓越的切割速度、低能耗和环保特性,在光伏行业中替代了传统的砂浆切割方式,大幅提升了生产效率和硅片质量。凭借其在切割精度、稳定性和操作便捷性上的优势,金刚线开方机已成为光伏材料加工领域的重
- Maven
Array_06
eclipsejdkmaven
Maven
Maven是基于项目对象模型(POM), 信息来管理项目的构建,报告和文档的软件项目管理工具。
Maven 除了以程序构建能力为特色之外,还提供高级项目管理工具。由于 Maven 的缺省构建规则有较高的可重用性,所以常常用两三行 Maven 构建脚本就可以构建简单的项目。由于 Maven 的面向项目的方法,许多 Apache Jakarta 项目发文时使用 Maven,而且公司
- ibatis的queyrForList和queryForMap区别
bijian1013
javaibatis
一.说明
iBatis的返回值参数类型也有种:resultMap与resultClass,这两种类型的选择可以用两句话说明之:
1.当结果集列名和类的属性名完全相对应的时候,则可直接用resultClass直接指定查询结果类
- LeetCode[位运算] - #191 计算汉明权重
Cwind
java位运算LeetCodeAlgorithm题解
原题链接:#191 Number of 1 Bits
要求:
写一个函数,以一个无符号整数为参数,返回其汉明权重。例如,‘11’的二进制表示为'00000000000000000000000000001011', 故函数应当返回3。
汉明权重:指一个字符串中非零字符的个数;对于二进制串,即其中‘1’的个数。
难度:简单
分析:
将十进制参数转换为二进制,然后计算其中1的个数即可。
“
- 浅谈java类与对象
15700786134
java
java是一门面向对象的编程语言,类与对象是其最基本的概念。所谓对象,就是一个个具体的物体,一个人,一台电脑,都是对象。而类,就是对象的一种抽象,是多个对象具有的共性的一种集合,其中包含了属性与方法,就是属于该类的对象所具有的共性。当一个类创建了对象,这个对象就拥有了该类全部的属性,方法。相比于结构化的编程思路,面向对象更适用于人的思维
- linux下双网卡同一个IP
被触发
linux
转自:
http://q2482696735.blog.163.com/blog/static/250606077201569029441/
由于需要一台机器有两个网卡,开始时设置在同一个网段的IP,发现数据总是从一个网卡发出,而另一个网卡上没有数据流动。网上找了下,发现相同的问题不少:
一、
关于双网卡设置同一网段IP然后连接交换机的时候出现的奇怪现象。当时没有怎么思考、以为是生成树
- 安卓按主页键隐藏程序之后无法再次打开
肆无忌惮_
安卓
遇到一个奇怪的问题,当SplashActivity跳转到MainActivity之后,按主页键,再去打开程序,程序没法再打开(闪一下),结束任务再开也是这样,只能卸载了再重装。而且每次在Log里都打印了这句话"进入主程序"。后来发现是必须跳转之后再finish掉SplashActivity
本来代码:
// 销毁这个Activity
fin
- 通过cookie保存并读取用户登录信息实例
知了ing
JavaScripthtml
通过cookie的getCookies()方法可获取所有cookie对象的集合;通过getName()方法可以获取指定的名称的cookie;通过getValue()方法获取到cookie对象的值。另外,将一个cookie对象发送到客户端,使用response对象的addCookie()方法。
下面通过cookie保存并读取用户登录信息的例子加深一下理解。
(1)创建index.jsp文件。在改
- JAVA 对象池
矮蛋蛋
javaObjectPool
原文地址:
http://www.blogjava.net/baoyaer/articles/218460.html
Jakarta对象池
☆为什么使用对象池
恰当地使用对象池化技术,可以有效地减少对象生成和初始化时的消耗,提高系统的运行效率。Jakarta Commons Pool组件提供了一整套用于实现对象池化
- ArrayList根据条件+for循环批量删除的方法
alleni123
java
场景如下:
ArrayList<Obj> list
Obj-> createTime, sid.
现在要根据obj的createTime来进行定期清理。(释放内存)
-------------------------
首先想到的方法就是
for(Obj o:list){
if(o.createTime-currentT>xxx){
- 阿里巴巴“耕地宝”大战各种宝
百合不是茶
平台战略
“耕地保”平台是阿里巴巴和安徽农民共同推出的一个 “首个互联网定制私人农场”,“耕地宝”由阿里巴巴投入一亿 ,主要是用来进行农业方面,将农民手中的散地集中起来 不仅加大农民集体在土地上面的话语权,还增加了土地的流通与 利用率,提高了土地的产量,有利于大规模的产业化的高科技农业的 发展,阿里在农业上的探索将会引起新一轮的产业调整,但是集体化之后农民的个体的话语权 将更少,国家应出台相应的法律法规保护
- Spring注入有继承关系的类(1)
bijian1013
javaspring
一个类一个类的注入
1.AClass类
package com.bijian.spring.test2;
public class AClass {
String a;
String b;
public String getA() {
return a;
}
public void setA(Strin
- 30岁转型期你能否成为成功人士
bijian1013
成功
很多人由于年轻时走了弯路,到了30岁一事无成,这样的例子大有人在。但同样也有一些人,整个职业生涯都发展得很优秀,到了30岁已经成为职场的精英阶层。由于做猎头的原因,我们接触很多30岁左右的经理人,发现他们在职业发展道路上往往有很多致命的问题。在30岁之前,他们的职业生涯表现很优秀,但从30岁到40岁这一段,很多人
- [Velocity三]基于Servlet+Velocity的web应用
bit1129
velocity
什么是VelocityViewServlet
使用org.apache.velocity.tools.view.VelocityViewServlet可以将Velocity集成到基于Servlet的web应用中,以Servlet+Velocity的方式实现web应用
Servlet + Velocity的一般步骤
1.自定义Servlet,实现VelocityViewServl
- 【Kafka十二】关于Kafka是一个Commit Log Service
bit1129
service
Kafka is a distributed, partitioned, replicated commit log service.这里的commit log如何理解?
A message is considered "committed" when all in sync replicas for that partition have applied i
- NGINX + LUA实现复杂的控制
ronin47
lua nginx 控制
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-14.输入一个已经按升序排序过的数组和一个数字, 在数组中查找两个数,使得它们的和正好是输入的那个数字
bylijinnan
java
public class TwoElementEqualSum {
/**
* 第 14 题:
题目:输入一个已经按升序排序过的数组和一个数字,
在数组中查找两个数,使得它们的和正好是输入的那个数字。
要求时间复杂度是 O(n) 。如果有多对数字的和等于输入的数字,输出任意一对即可。
例如输入数组 1 、 2 、 4 、 7 、 11 、 15 和数字 15 。由于
- Netty源码学习-HttpChunkAggregator-HttpRequestEncoder-HttpResponseDecoder
bylijinnan
javanetty
今天看Netty如何实现一个Http Server
org.jboss.netty.example.http.file.HttpStaticFileServerPipelineFactory:
pipeline.addLast("decoder", new HttpRequestDecoder());
pipeline.addLast(&quo
- java敏感词过虑-基于多叉树原理
cngolon
违禁词过虑替换违禁词敏感词过虑多叉树
基于多叉树的敏感词、关键词过滤的工具包,用于java中的敏感词过滤
1、工具包自带敏感词词库,第一次调用时读入词库,故第一次调用时间可能较长,在类加载后普通pc机上html过滤5000字在80毫秒左右,纯文本35毫秒左右。
2、如需自定义词库,将jar包考入WEB-INF工程的lib目录,在WEB-INF/classes目录下建一个
utf-8的words.dict文本文件,
- 多线程知识
cuishikuan
多线程
T1,T2,T3三个线程工作顺序,按照T1,T2,T3依次进行
public class T1 implements Runnable{
@Override
 
- spring整合activemq
dalan_123
java spring jms
整合spring和activemq需要搞清楚如下的东东1、ConnectionFactory分: a、spring管理连接到activemq服务器的管理ConnectionFactory也即是所谓产生到jms服务器的链接 b、真正产生到JMS服务器链接的ConnectionFactory还得
- MySQL时间字段究竟使用INT还是DateTime?
dcj3sjt126com
mysql
环境:Windows XPPHP Version 5.2.9MySQL Server 5.1
第一步、创建一个表date_test(非定长、int时间)
CREATE TABLE `test`.`date_test` (`id` INT NOT NULL AUTO_INCREMENT ,`start_time` INT NOT NULL ,`some_content`
- Parcel: unable to marshal value
dcj3sjt126com
marshal
在两个activity直接传递List<xxInfo>时,出现Parcel: unable to marshal value异常。 在MainActivity页面(MainActivity页面向NextActivity页面传递一个List<xxInfo>): Intent intent = new Intent(this, Next
- linux进程的查看上(ps)
eksliang
linux pslinux ps -llinux ps aux
ps:将某个时间点的进程运行情况选取下来
转载请出自出处:http://eksliang.iteye.com/admin/blogs/2119469
http://eksliang.iteye.com
ps 这个命令的man page 不是很好查阅,因为很多不同的Unix都使用这儿ps来查阅进程的状态,为了要符合不同版本的需求,所以这个
- 为什么第三方应用能早于System的app启动
gqdy365
System
Android应用的启动顺序网上有一大堆资料可以查阅了,这里就不细述了,这里不阐述ROM启动还有bootloader,软件启动的大致流程应该是启动kernel -> 运行servicemanager 把一些native的服务用命令启动起来(包括wifi, power, rild, surfaceflinger, mediaserver等等)-> 启动Dalivk中的第一个进程Zygot
- App Framework发送JSONP请求(3)
hw1287789687
jsonp跨域请求发送jsonpajax请求越狱请求
App Framework 中如何发送JSONP请求呢?
使用jsonp,详情请参考:http://json-p.org/
如何发送Ajax请求呢?
(1)登录
/***
* 会员登录
* @param username
* @param password
*/
var user_login=function(username,password){
// aler
- 发福利,整理了一份关于“资源汇总”的汇总
justjavac
资源
觉得有用的话,可以去github关注:https://github.com/justjavac/awesome-awesomeness-zh_CN 通用
free-programming-books-zh_CN 免费的计算机编程类中文书籍
精彩博客集合 hacke2/hacke2.github.io#2
ResumeSample 程序员简历
- 用 Java 技术创建 RESTful Web 服务
macroli
java编程WebREST
转载:http://www.ibm.com/developerworks/cn/web/wa-jaxrs/
JAX-RS (JSR-311) 【 Java API for RESTful Web Services 】是一种 Java™ API,可使 Java Restful 服务的开发变得迅速而轻松。这个 API 提供了一种基于注释的模型来描述分布式资源。注释被用来提供资源的位
- CentOS6.5-x86_64位下oracle11g的安装详细步骤及注意事项
超声波
oraclelinux
前言:
这两天项目要上线了,由我负责往服务器部署整个项目,因此首先要往服务器安装oracle,服务器本身是CentOS6.5的64位系统,安装的数据库版本是11g,在整个的安装过程中碰到很多的坑,不过最后还是通过各种途径解决并成功装上了。转别写篇博客来记录完整的安装过程以及在整个过程中的注意事项。希望对以后那些刚刚接触的菜鸟们能起到一定的帮助作用。
安装过程中可能遇到的问题(注
- HttpClient 4.3 设置keeplive 和 timeout 的方法
supben
httpclient
ConnectionKeepAliveStrategy kaStrategy = new DefaultConnectionKeepAliveStrategy() {
@Override
public long getKeepAliveDuration(HttpResponse response, HttpContext context) {
long keepAlive
- Spring 4.2新特性-@Import注解的升级
wiselyman
spring 4
3.1 @Import
@Import注解在4.2之前只支持导入配置类
在4.2,@Import注解支持导入普通的java类,并将其声明成一个bean
3.2 示例
演示java类
package com.wisely.spring4_2.imp;
public class DemoService {
public void doSomethin