iOS类的加载原理(上)

前言

iOS-dyld加载分析一文中我们介绍了dyld加载分析,那么我们的类是如何被加载进来的,它的原理又是什么呢?我们带着这些疑问开始我们的探索之旅。

_objc_init分析

为什么从_objc_init分析iOS-dyld加载分析一文中有介绍,这里不做解释了,我们先贴下这个函数的代码,如下图:

1

environ_init();就是环境变量的初始化,方便我们调试程序。

2

这些相关变量我们可以在xcode中的Arguments中的Environment Variables中配置,这里不再进行一一展开说明。
tls_init(); 关于线程key的绑定 - ⽐如每线程数据的析构函数。
static_init();运⾏C ++静态构造函数。在dyld调⽤我们的静态构造函数之前,libobjc 会调⽤ _objc_init(),因此我们必须⾃⼰做
如下图:
3

runtime_init(); 如图

4

运行时环境初如化,里面主要是unAttachedCategoriesallocatedClasses 后面会分析。
exception_init();初始化libobjc的异常处理系统。
catche_init()缓存条件初始化。
_dyld_objc_notify_register(&map_images, load_images, unmap_image);是重点分析对象,这里会调用map_images,那么map_imges到底做了什么?我们将进行着重分析。

map_images分析

** _dyld_objc_notify_register这个函数的调用,会先进入 map_images load_images这两个函数中, map_images是引用类型,也就是指针传递, map_images会跟着内部的变化而变化(不断的循环和递归),而load_images(主要就是调用load方法)是指针拷贝。
我们看下
map_images**函数的代码,如图:

4

我们再看下map_images_nolock函数的代码,如下:

void 
map_images_nolock(unsigned mhCount, const char * const mhPaths[],
                  const struct mach_header * const mhdrs[])
{
    static bool firstTime = YES;
    header_info *hList[mhCount];
    uint32_t hCount;
    size_t selrefCount = 0;

    // Perform first-time initialization if necessary.
    // This function is called before ordinary library initializers. 
    // fixme defer initialization until an objc-using image is found?
    if (firstTime) {
        preopt_init();
    }

    if (PrintImages) {
        _objc_inform("IMAGES: processing %u newly-mapped images...\n", mhCount);
    }


    // Find all images with Objective-C metadata.
    hCount = 0;

    // Count classes. Size various table based on the total.
    int totalClasses = 0;
    int unoptimizedTotalClasses = 0;
    {
        uint32_t i = mhCount;
        while (i--) {
            const headerType *mhdr = (const headerType *)mhdrs[I];

            auto hi = addHeader(mhdr, mhPaths[i], totalClasses, unoptimizedTotalClasses);
            if (!hi) {
                // no objc data in this entry
                continue;
            }
            
            if (mhdr->filetype == MH_EXECUTE) {
                // Size some data structures based on main executable's size
#if __OBJC2__
                // If dyld3 optimized the main executable, then there shouldn't
                // be any selrefs needed in the dynamic map so we can just init
                // to a 0 sized map
                if ( !hi->hasPreoptimizedSelectors() ) {
                  size_t count;
                  _getObjc2SelectorRefs(hi, &count);
                  selrefCount += count;
                  _getObjc2MessageRefs(hi, &count);
                  selrefCount += count;
                }
#else
                _getObjcSelectorRefs(hi, &selrefCount);
#endif
                
#if SUPPORT_GC_COMPAT
                // Halt if this is a GC app.
                if (shouldRejectGCApp(hi)) {
                    _objc_fatal_with_reason
                        (OBJC_EXIT_REASON_GC_NOT_SUPPORTED, 
                         OS_REASON_FLAG_CONSISTENT_FAILURE, 
                         "Objective-C garbage collection " 
                         "is no longer supported.");
                }
#endif
            }
            
            hList[hCount++] = hi;
            
            if (PrintImages) {
                _objc_inform("IMAGES: loading image for %s%s%s%s%s\n", 
                             hi->fname(),
                             mhdr->filetype == MH_BUNDLE ? " (bundle)" : "",
                             hi->info()->isReplacement() ? " (replacement)" : "",
                             hi->info()->hasCategoryClassProperties() ? " (has class properties)" : "",
                             hi->info()->optimizedByDyld()?" (preoptimized)":"");
            }
        }
    }

    // Perform one-time runtime initialization that must be deferred until 
    // the executable itself is found. This needs to be done before 
    // further initialization.
    // (The executable may not be present in this infoList if the 
    // executable does not contain Objective-C code but Objective-C 
    // is dynamically loaded later.
    if (firstTime) {
        sel_init(selrefCount);
        arr_init();

#if SUPPORT_GC_COMPAT
        // Reject any GC images linked to the main executable.
        // We already rejected the app itself above.
        // Images loaded after launch will be rejected by dyld.

        for (uint32_t i = 0; i < hCount; i++) {
            auto hi = hList[I];
            auto mh = hi->mhdr();
            if (mh->filetype != MH_EXECUTE  &&  shouldRejectGCImage(mh)) {
                _objc_fatal_with_reason
                    (OBJC_EXIT_REASON_GC_NOT_SUPPORTED, 
                     OS_REASON_FLAG_CONSISTENT_FAILURE, 
                     "%s requires Objective-C garbage collection "
                     "which is no longer supported.", hi->fname());
            }
        }
#endif

#if TARGET_OS_OSX
        // Disable +initialize fork safety if the app is too old (< 10.13).
        // Disable +initialize fork safety if the app has a
        //   __DATA,__objc_fork_ok section.

//        if (!dyld_program_sdk_at_least(dyld_platform_version_macOS_10_13)) {
//            DisableInitializeForkSafety = true;
//            if (PrintInitializing) {
//                _objc_inform("INITIALIZE: disabling +initialize fork "
//                             "safety enforcement because the app is "
//                             "too old.)");
//            }
//        }

        for (uint32_t i = 0; i < hCount; i++) {
            auto hi = hList[I];
            auto mh = hi->mhdr();
            if (mh->filetype != MH_EXECUTE) continue;
            unsigned long size;
            if (getsectiondata(hi->mhdr(), "__DATA", "__objc_fork_ok", &size)) {
                DisableInitializeForkSafety = true;
                if (PrintInitializing) {
                    _objc_inform("INITIALIZE: disabling +initialize fork "
                                 "safety enforcement because the app has "
                                 "a __DATA,__objc_fork_ok section");
                }
            }
            break;  // assume only one MH_EXECUTE image
        }
#endif

    }

    if (hCount > 0) {
        _read_images(hList, hCount, totalClasses, unoptimizedTotalClasses);
    }

    firstTime = NO;
    
    // Call image load funcs after everything is set up.
    for (auto func : loadImageFuncs) {
        for (uint32_t i = 0; i < mhCount; i++) {
            func(mhdrs[I]);
        }
    }
}

** _read_images(hList, hCount, totalClasses, unoptimizedTotalClasses);**就是读取我们的镜像文件。
我们再看下它的代码:

/***********************************************************************
* _read_images
* Perform initial processing of the headers in the linked 
* list beginning with headerList. 
*
* Called by: map_images_nolock
*
* Locking: runtimeLock acquired by map_images
**********************************************************************/
void _read_images(header_info **hList, uint32_t hCount, int totalClasses, int unoptimizedTotalClasses)
{
    header_info *hi;
    uint32_t hIndex;
    size_t count;
    size_t I;
    Class *resolvedFutureClasses = nil;
    size_t resolvedFutureClassCount = 0;
    static bool doneOnce;
    bool launchTime = NO;
    TimeLogger ts(PrintImageTimes);

    runtimeLock.assertLocked();

#define EACH_HEADER \
    hIndex = 0;         \
    hIndex < hCount && (hi = hList[hIndex]); \
    hIndex++

    if (!doneOnce) {
        doneOnce = YES;
        launchTime = YES;

#if SUPPORT_NONPOINTER_ISA
        // Disable non-pointer isa under some conditions.

# if SUPPORT_INDEXED_ISA
        // Disable nonpointer isa if any image contains old Swift code
        for (EACH_HEADER) {
            if (hi->info()->containsSwift()  &&
                hi->info()->swiftUnstableVersion() < objc_image_info::SwiftVersion3)
            {
                DisableNonpointerIsa = true;
                if (PrintRawIsa) {
                    _objc_inform("RAW ISA: disabling non-pointer isa because "
                                 "the app or a framework contains Swift code "
                                 "older than Swift 3.0");
                }
                break;
            }
        }
# endif

# if TARGET_OS_OSX
        // Disable non-pointer isa if the app is too old
        // (linked before OS X 10.11)
//        if (!dyld_program_sdk_at_least(dyld_platform_version_macOS_10_11)) {
//            DisableNonpointerIsa = true;
//            if (PrintRawIsa) {
//                _objc_inform("RAW ISA: disabling non-pointer isa because "
//                             "the app is too old.");
//            }
//        }

        // Disable non-pointer isa if the app has a __DATA,__objc_rawisa section
        // New apps that load old extensions may need this.
        for (EACH_HEADER) {
            if (hi->mhdr()->filetype != MH_EXECUTE) continue;
            unsigned long size;
            if (getsectiondata(hi->mhdr(), "__DATA", "__objc_rawisa", &size)) {
                DisableNonpointerIsa = true;
                if (PrintRawIsa) {
                    _objc_inform("RAW ISA: disabling non-pointer isa because "
                                 "the app has a __DATA,__objc_rawisa section");
                }
            }
            break;  // assume only one MH_EXECUTE image
        }
# endif

#endif

        if (DisableTaggedPointers) {
            disableTaggedPointers();
        }
        
        initializeTaggedPointerObfuscator();

        if (PrintConnecting) {
            _objc_inform("CLASS: found %d classes during launch", totalClasses);
        }

        // namedClasses
        // Preoptimized classes don't go in this table.
        // 4/3 is NXMapTable's load factor
        int namedClassesSize = 
            (isPreoptimized() ? unoptimizedTotalClasses : totalClasses) * 4 / 3;
        gdb_objc_realized_classes =
            NXCreateMapTable(NXStrValueMapPrototype, namedClassesSize);

        ts.log("IMAGE TIMES: first time tasks");
    }

    // Fix up @selector references
    static size_t UnfixedSelectors;
    {
        mutex_locker_t lock(selLock);
        for (EACH_HEADER) {
            if (hi->hasPreoptimizedSelectors()) continue;

            bool isBundle = hi->isBundle();
            SEL *sels = _getObjc2SelectorRefs(hi, &count);
            UnfixedSelectors += count;
            for (i = 0; i < count; i++) {
                const char *name = sel_cname(sels[i]);
                SEL sel = sel_registerNameNoLock(name, isBundle);
                if (sels[i] != sel) {
                    sels[i] = sel;
                }
            }
        }
    }

    ts.log("IMAGE TIMES: fix up selector references");

    // Discover classes. Fix up unresolved future classes. Mark bundle classes.
    bool hasDyldRoots = dyld_shared_cache_some_image_overridden();

    for (EACH_HEADER) {
        if (! mustReadClasses(hi, hasDyldRoots)) {
            // Image is sufficiently optimized that we need not call readClass()
            continue;
        }

        classref_t const *classlist = _getObjc2ClassList(hi, &count);

        bool headerIsBundle = hi->isBundle();
        bool headerIsPreoptimized = hi->hasPreoptimizedClasses();

        for (i = 0; i < count; i++) {
            Class cls = (Class)classlist[I];
            Class newCls = readClass(cls, headerIsBundle, headerIsPreoptimized);

            if (newCls != cls  &&  newCls) {
                // Class was moved but not deleted. Currently this occurs 
                // only when the new class resolved a future class.
                // Non-lazily realize the class below.
                resolvedFutureClasses = (Class *)
                    realloc(resolvedFutureClasses, 
                            (resolvedFutureClassCount+1) * sizeof(Class));
                resolvedFutureClasses[resolvedFutureClassCount++] = newCls;
            }
        }
    }

    ts.log("IMAGE TIMES: discover classes");

    // Fix up remapped classes
    // Class list and nonlazy class list remain unremapped.
    // Class refs and super refs are remapped for message dispatching.
    
    if (!noClassesRemapped()) {
        for (EACH_HEADER) {
            Class *classrefs = _getObjc2ClassRefs(hi, &count);
            for (i = 0; i < count; i++) {
                remapClassRef(&classrefs[I]);
            }
            // fixme why doesn't test future1 catch the absence of this?
            classrefs = _getObjc2SuperRefs(hi, &count);
            for (i = 0; i < count; i++) {
                remapClassRef(&classrefs[I]);
            }
        }
    }

    ts.log("IMAGE TIMES: remap classes");

#if SUPPORT_FIXUP
    // Fix up old objc_msgSend_fixup call sites
    for (EACH_HEADER) {
        message_ref_t *refs = _getObjc2MessageRefs(hi, &count);
        if (count == 0) continue;

        if (PrintVtables) {
            _objc_inform("VTABLES: repairing %zu unsupported vtable dispatch "
                         "call sites in %s", count, hi->fname());
        }
        for (i = 0; i < count; i++) {
            fixupMessageRef(refs+i);
        }
    }

    ts.log("IMAGE TIMES: fix up objc_msgSend_fixup");
#endif


    // Discover protocols. Fix up protocol refs.
    for (EACH_HEADER) {
        extern objc_class OBJC_CLASS_$_Protocol;
        Class cls = (Class)&OBJC_CLASS_$_Protocol;
        ASSERT(cls);
        NXMapTable *protocol_map = protocols();
        bool isPreoptimized = hi->hasPreoptimizedProtocols();

        // Skip reading protocols if this is an image from the shared cache
        // and we support roots
        // Note, after launch we do need to walk the protocol as the protocol
        // in the shared cache is marked with isCanonical() and that may not
        // be true if some non-shared cache binary was chosen as the canonical
        // definition
        if (launchTime && isPreoptimized) {
            if (PrintProtocols) {
                _objc_inform("PROTOCOLS: Skipping reading protocols in image: %s",
                             hi->fname());
            }
            continue;
        }

        bool isBundle = hi->isBundle();

        protocol_t * const *protolist = _getObjc2ProtocolList(hi, &count);
        for (i = 0; i < count; i++) {
            readProtocol(protolist[i], cls, protocol_map, 
                         isPreoptimized, isBundle);
        }
    }

    ts.log("IMAGE TIMES: discover protocols");

    // Fix up @protocol references
    // Preoptimized images may have the right 
    // answer already but we don't know for sure.
    for (EACH_HEADER) {
        // At launch time, we know preoptimized image refs are pointing at the
        // shared cache definition of a protocol.  We can skip the check on
        // launch, but have to visit @protocol refs for shared cache images
        // loaded later.
        if (launchTime && hi->isPreoptimized())
            continue;
        protocol_t **protolist = _getObjc2ProtocolRefs(hi, &count);
        for (i = 0; i < count; i++) {
            remapProtocolRef(&protolist[I]);
        }
    }

    ts.log("IMAGE TIMES: fix up @protocol references");

    // Discover categories. Only do this after the initial category
    // attachment has been done. For categories present at startup,
    // discovery is deferred until the first load_images call after
    // the call to _dyld_objc_notify_register completes. rdar://problem/53119145
    if (didInitialAttachCategories) {
        for (EACH_HEADER) {
            load_categories_nolock(hi);
        }
    }

    ts.log("IMAGE TIMES: discover categories");

    // Category discovery MUST BE Late to avoid potential races
    // when other threads call the new category code before
    // this thread finishes its fixups.

    // +load handled by prepare_load_methods()

    // Realize non-lazy classes (for +load methods and static instances)
    for (EACH_HEADER) {
        classref_t const *classlist = hi->nlclslist(&count);
        for (i = 0; i < count; i++) {
            Class cls = remapClass(classlist[i]);
            if (!cls) continue;

            addClassTableEntry(cls);

            if (cls->isSwiftStable()) {
                if (cls->swiftMetadataInitializer()) {
                    _objc_fatal("Swift class %s with a metadata initializer "
                                "is not allowed to be non-lazy",
                                cls->nameForLogging());
                }
                // fixme also disallow relocatable classes
                // We can't disallow all Swift classes because of
                // classes like Swift.__EmptyArrayStorage
            }
            realizeClassWithoutSwift(cls, nil);
        }
    }

    ts.log("IMAGE TIMES: realize non-lazy classes");

    // Realize newly-resolved future classes, in case CF manipulates them
    if (resolvedFutureClasses) {
        for (i = 0; i < resolvedFutureClassCount; i++) {
            Class cls = resolvedFutureClasses[I];
            if (cls->isSwiftStable()) {
                _objc_fatal("Swift class is not allowed to be future");
            }
            realizeClassWithoutSwift(cls, nil);
            cls->setInstancesRequireRawIsaRecursively(false/*inherited*/);
        }
        free(resolvedFutureClasses);
    }

    ts.log("IMAGE TIMES: realize future classes");

    if (DebugNonFragileIvars) {
        realizeAllClasses();
    }


    // Print preoptimization statistics
    if (PrintPreopt) {
        static unsigned int PreoptTotalMethodLists;
        static unsigned int PreoptOptimizedMethodLists;
        static unsigned int PreoptTotalClasses;
        static unsigned int PreoptOptimizedClasses;

        for (EACH_HEADER) {
            if (hi->hasPreoptimizedSelectors()) {
                _objc_inform("PREOPTIMIZATION: honoring preoptimized selectors "
                             "in %s", hi->fname());
            }
            else if (hi->info()->optimizedByDyld()) {
                _objc_inform("PREOPTIMIZATION: IGNORING preoptimized selectors "
                             "in %s", hi->fname());
            }

            classref_t const *classlist = _getObjc2ClassList(hi, &count);
            for (i = 0; i < count; i++) {
                Class cls = remapClass(classlist[i]);
                if (!cls) continue;

                PreoptTotalClasses++;
                if (hi->hasPreoptimizedClasses()) {
                    PreoptOptimizedClasses++;
                }
                
                const method_list_t *mlist;
                if ((mlist = cls->bits.safe_ro()->baseMethods())) {
                    PreoptTotalMethodLists++;
                    if (mlist->isFixedUp()) {
                        PreoptOptimizedMethodLists++;
                    }
                }
                if ((mlist = cls->ISA()->bits.safe_ro()->baseMethods())) {
                    PreoptTotalMethodLists++;
                    if (mlist->isFixedUp()) {
                        PreoptOptimizedMethodLists++;
                    }
                }
            }
        }

        _objc_inform("PREOPTIMIZATION: %zu selector references not "
                     "pre-optimized", UnfixedSelectors);
        _objc_inform("PREOPTIMIZATION: %u/%u (%.3g%%) method lists pre-sorted",
                     PreoptOptimizedMethodLists, PreoptTotalMethodLists, 
                     PreoptTotalMethodLists
                     ? 100.0*PreoptOptimizedMethodLists/PreoptTotalMethodLists 
                     : 0.0);
        _objc_inform("PREOPTIMIZATION: %u/%u (%.3g%%) classes pre-registered",
                     PreoptOptimizedClasses, PreoptTotalClasses, 
                     PreoptTotalClasses 
                     ? 100.0*PreoptOptimizedClasses/PreoptTotalClasses
                     : 0.0);
        _objc_inform("PREOPTIMIZATION: %zu protocol references not "
                     "pre-optimized", UnfixedProtocolReferences);
    }

#undef EACH_HEADER
}

这里的代码过长,我们只分析比较主要的,其它的大家可以自行阅读。
我们先介绍下read_images大体的流程:
1.条件控制进⾏⼀次的加载。
2.修复预编译阶段的@selector的混乱问题。
3.错误混乱的类处理。
4.修复重映射一些滑被镜像文件加载进来的类。
5.修复一些消息!
6.当我们的类里面有协议的时候:readProtocol。
8.分类处理。
9.类的加载处理。
10.没有被处理的类,优化那些被侵犯的类。

这里第8,9,10三个是我们要进行着重分析的,因为这些都是有关类的加载。

initializeTaggedPointerObfuscator();这行代码是对小对象的一些混淆,代码如图:

4

objc_debug_taggedpointer_obfuscator &= ~(_OBJC_TAG_EXT_MASK | _OBJC_TAG_NO_OBFUSCATION_MASK);就是编码取值。

int namedClassesSize =
(isPreoptimized() ? unoptimizedTotalClasses : totalClasses) * 4 / 3;
gdb_objc_realized_classes =
NXCreateMapTable(NXStrValueMapPrototype, namedClassesSize);

这里是创建表,** namedClassesSize是创建表的大小,这个大小为什么是乘4除3?我们接着分析。
乘4除3是负载因子,
namedClassesSize是要开启的总容积,假如我们总共要开辟的大小是8, 那么也就是84/3,当我们往里面添加的时候,什么时候扩容呢,也就是x3/4 = 8*4/3,所以x不能超过8。
上文中我们有介绍过runtime_init()这个里面也在创建表,代码如下:

 objc::unattachedCategories.init(32);
 objc::allocatedClasses.init();

objc::allocatedClasses.init();这个表与** gdb_objc_realized_classes这个表有什么区别呢,我们接着分析,
** gdb_objc_realized_classes
这个表是NXMapTable类型,这个是不管是否实现与否的总表。
objc::allocatedClasses.init();这个表是已经开辟过的表。

   static size_t UnfixedSelectors;
    {
        mutex_locker_t lock(selLock);
        for (EACH_HEADER) {
            if (hi->hasPreoptimizedSelectors()) continue;

            bool isBundle = hi->isBundle();
            SEL *sels = _getObjc2SelectorRefs(hi, &count);
            UnfixedSelectors += count;
            for (i = 0; i < count; i++) {
                const char *name = sel_cname(sels[i]);
                SEL sel = sel_registerNameNoLock(name, isBundle);
                if (sels[i] != sel) {
                    sels[i] = sel;
                }
            }
        }
    }

这段代码是修复selector的引用。
下面我们来分析这段代码:

 for (EACH_HEADER) {
        if (! mustReadClasses(hi, hasDyldRoots)) {
            // Image is sufficiently optimized that we need not call readClass()
            continue;
        }

        classref_t const *classlist = _getObjc2ClassList(hi, &count);

        bool headerIsBundle = hi->isBundle();
        bool headerIsPreoptimized = hi->hasPreoptimizedClasses();

        for (i = 0; i < count; i++) {
            Class cls = (Class)classlist[I];
            Class newCls = readClass(cls, headerIsBundle, headerIsPreoptimized);

            if (newCls != cls  &&  newCls) {
                // Class was moved but not deleted. Currently this occurs 
                // only when the new class resolved a future class.
                // Non-lazily realize the class below.
                resolvedFutureClasses = (Class *)
                    realloc(resolvedFutureClasses, 
                            (resolvedFutureClassCount+1) * sizeof(Class));
                resolvedFutureClasses[resolvedFutureClassCount++] = newCls;
            }
        }
    }

这段代码在执行过程中没有进入resolvedFutureClasses这个方法的调用,这是为什么呢,我们继续往往下分析。
resolvedFutureClasses这个方法的意思是未来要处理的类,处理没有删除干净的类(会引起混乱)。
我们重新运行,断点这行代码** Class newCls = readClass(cls, headerIsBundle, headerIsPreoptimized);,如图所示:

5

这里做了类的处理,那么它就是我们要研究的重点,下面我们将对
readClass**这个函数进行分析。
我们先贴下这个函数的代码,然后分析:

/***********************************************************************
* readClass
* Read a class and metaclass as written by a compiler.
* Returns the new class pointer. This could be: 
* - cls
* - nil  (cls has a missing weak-linked superclass)
* - something else (space for this class was reserved by a future class)
*
* Note that all work performed by this function is preflighted by 
* mustReadClasses(). Do not change this function without updating that one.
*
* Locking: runtimeLock acquired by map_images or objc_readClassPair
**********************************************************************/
Class readClass(Class cls, bool headerIsBundle, bool headerIsPreoptimized)
{
    const char *mangledName = cls->nonlazyMangledName();
    
    if (missingWeakSuperclass(cls)) {
        // No superclass (probably weak-linked). 
        // Disavow any knowledge of this subclass.
        if (PrintConnecting) {
            _objc_inform("CLASS: IGNORING class '%s' with "
                         "missing weak-linked superclass", 
                         cls->nameForLogging());
        }
        addRemappedClass(cls, nil);
        cls->setSuperclass(nil);
        return nil;
    }
    
    cls->fixupBackwardDeployingStableSwift();

    Class replacing = nil;
    if (mangledName != nullptr) {
        if (Class newCls = popFutureNamedClass(mangledName)) {
            // This name was previously allocated as a future class.
            // Copy objc_class to future class's struct.
            // Preserve future's rw data block.

            if (newCls->isAnySwift()) {
                _objc_fatal("Can't complete future class request for '%s' "
                            "because the real class is too big.",
                            cls->nameForLogging());
            }

            class_rw_t *rw = newCls->data();
            const class_ro_t *old_ro = rw->ro();
            memcpy(newCls, cls, sizeof(objc_class));

            // Manually set address-discriminated ptrauthed fields
            // so that newCls gets the correct signatures.
            newCls->setSuperclass(cls->getSuperclass());
            newCls->initIsa(cls->getIsa());

            rw->set_ro((class_ro_t *)newCls->data());
            newCls->setData(rw);
            freeIfMutable((char *)old_ro->getName());
            free((void *)old_ro);

            addRemappedClass(cls, newCls);

            replacing = cls;
            cls = newCls;
        }
    }
    
    if (headerIsPreoptimized  &&  !replacing) {
        // class list built in shared cache
        // fixme strict assert doesn't work because of duplicates
        // ASSERT(cls == getClass(name));
        ASSERT(mangledName == nullptr || getClassExceptSomeSwift(mangledName));
    } else {
        if (mangledName) { //some Swift generic classes can lazily generate their names
            addNamedClass(cls, mangledName, replacing);
        } else {
            Class meta = cls->ISA();
            const class_ro_t *metaRO = meta->bits.safe_ro();
            ASSERT(metaRO->getNonMetaclass() && "Metaclass with lazy name must have a pointer to the corresponding nonmetaclass.");
            ASSERT(metaRO->getNonMetaclass() == cls && "Metaclass nonmetaclass pointer must equal the original class.");
        }
        addClassTableEntry(cls);
    }

    // for future reference: shared cache never contains MH_BUNDLEs
    if (headerIsBundle) {
        cls->data()->flags |= RO_FROM_BUNDLE;
        cls->ISA()->data()->flags |= RO_FROM_BUNDLE;
    }
    
    return cls;
}

这段代码是这个函数的核心:

            class_rw_t *rw = newCls->data();
            const class_ro_t *old_ro = rw->ro();
            memcpy(newCls, cls, sizeof(objc_class));

            // Manually set address-discriminated ptrauthed fields
            // so that newCls gets the correct signatures.
            newCls->setSuperclass(cls->getSuperclass());
            newCls->initIsa(cls->getIsa());

            rw->set_ro((class_ro_t *)newCls->data());
            newCls->setData(rw);
            freeIfMutable((char *)old_ro->getName());
            free((void *)old_ro);

            addRemappedClass(cls, newCls);

我们在终端po mangledName是一个"NSStackBlock"字符串,o为了方便,我们先加入:

printf("%s- RO---%s",__func__, mangledName);

然后重新运行,可以看到有RoPerson的打印。
我们再加一些判断代码,来判断我们自己的类是怎么加载的,如下:

    const char *RoPersonName = "RoPerson";
    if (strcmp(mangledName, RoPersonName)==0) {
        printf("%s---RO-----%s\n",__func__, mangledName);
    }

然后再重新运行,断点,如图所示:


5

发现**if (Class newCls = popFutureNamedClass(mangledName)) **这里根本没进来。
接着会调这段代码:

 if (mangledName) { //some Swift generic classes can lazily generate their names
            addNamedClass(cls, mangledName, replacing);
        }

加入到哈希map中去。
addClassTableEntry(cls);这个函数的代码如下:

static void
addClassTableEntry(Class cls, bool addMeta = true)
{
    runtimeLock.assertLocked();

    // This class is allowed to be a known class via the shared cache or via
    // data segments, but it is not allowed to be in the dynamic table already.
    auto &set = objc::allocatedClasses.get();

    ASSERT(set.find(cls) == set.end());

    if (!isKnownClass(cls))
        set.insert(cls);
    if (addMeta)
        addClassTableEntry(cls->ISA(), false);
}

if (!isKnownClass(cls))
set.insert(cls);
如果当前类不存在(未知的)会插入到被当前被加载类中去,同时会判断是否要把元类插入进来。

realizeClass的分析

我们为了方便调试,可以在类相关的地方加入以下代码方便我们调试

    const char *mangledName = cls->nonlazyMangledName();
    const char *RoPersonName = "RoPerson";

    if (strcmp(mangledName, RoPersonName) == 0) {
        printf("%s -RO: 要研究的: - %s\n",__func__,mangledName);
    }

然后我们在类相关的地方打个断点调试,如图所示代码:

6

从上图可以看出mangledName就是RoPerson,断点继续执行,发现走到了** realizeClassWithoutSwift(cls, nil);**这行代码,这行代码就是类的实现,也就是核心重点。
我们先把这段代码贴出来,如下:

/***********************************************************************
* realizeClassWithoutSwift
* Performs first-time initialization on class cls, 
* including allocating its read-write data.
* Does not perform any Swift-side initialization.
* Returns the real class structure for the class. 
* Locking: runtimeLock must be write-locked by the caller
*****************************核心重点*****************************************/
static Class realizeClassWithoutSwift(Class cls, Class previously)
{
    runtimeLock.assertLocked();

    class_rw_t *rw;
    Class supercls;
    Class metacls;

    if (!cls) return nil;
    if (cls->isRealized()) {
        validateAlreadyRealizedClass(cls);
        return cls;
    }
    ASSERT(cls == remapClass(cls));

    // fixme verify class is not in an un-dlopened part of the shared cache?

    auto ro = (const class_ro_t *)cls->data();
    auto isMeta = ro->flags & RO_META;
    
    
    
    
    if (ro->flags & RO_FUTURE) {
        // This was a future class. rw data is already allocated.
        rw = cls->data();
        ro = cls->data()->ro();
        ASSERT(!isMeta);
        cls->changeInfo(RW_REALIZED|RW_REALIZING, RW_FUTURE);
    } else {
        // Normal class. Allocate writeable class data. ro -> rw
        rw = objc::zalloc();
        rw->set_ro(ro);
        rw->flags = RW_REALIZED|RW_REALIZING|isMeta;
        cls->setData(rw);
    }

    cls->cache.initializeToEmptyOrPreoptimizedInDisguise();

#if FAST_CACHE_META
    if (isMeta) cls->cache.setBit(FAST_CACHE_META);
#endif

    // Choose an index for this class.
    // Sets cls->instancesRequireRawIsa if indexes no more indexes are available
    cls->chooseClassArrayIndex();

    if (PrintConnecting) {
        _objc_inform("CLASS: realizing class '%s'%s %p %p #%u %s%s",
                     cls->nameForLogging(), isMeta ? " (meta)" : "", 
                     (void*)cls, ro, cls->classArrayIndex(),
                     cls->isSwiftStable() ? "(swift)" : "",
                     cls->isSwiftLegacy() ? "(pre-stable swift)" : "");
    }

    // Realize superclass and metaclass, if they aren't already.
    // This needs to be done after RW_REALIZED is set above, for root classes.
    // This needs to be done after class index is chosen, for root metaclasses.
    // This assumes that none of those classes have Swift contents,
    //   or that Swift's initializers have already been called.
    //   fixme that assumption will be wrong if we add support
    //   for ObjC subclasses of Swift classes.
    supercls = realizeClassWithoutSwift(remapClass(cls->getSuperclass()), nil);
    metacls = realizeClassWithoutSwift(remapClass(cls->ISA()), nil);

#if SUPPORT_NONPOINTER_ISA
    if (isMeta) {
        // Metaclasses do not need any features from non pointer ISA
        // This allows for a faspath for classes in objc_retain/objc_release.
        cls->setInstancesRequireRawIsa();
    } else {
        // Disable non-pointer isa for some classes and/or platforms.
        // Set instancesRequireRawIsa.
        bool instancesRequireRawIsa = cls->instancesRequireRawIsa();
        bool rawIsaIsInherited = false;
        static bool hackedDispatch = false;

        if (DisableNonpointerIsa) {
            // Non-pointer isa disabled by environment or app SDK version
            instancesRequireRawIsa = true;
        }
        else if (!hackedDispatch  &&  0 == strcmp(ro->getName(), "OS_object"))
        {
            // hack for libdispatch et al - isa also acts as vtable pointer
            hackedDispatch = true;
            instancesRequireRawIsa = true;
        }
        else if (supercls  &&  supercls->getSuperclass()  &&
                 supercls->instancesRequireRawIsa())
        {
            // This is also propagated by addSubclass()
            // but nonpointer isa setup needs it earlier.
            // Special case: instancesRequireRawIsa does not propagate
            // from root class to root metaclass
            instancesRequireRawIsa = true;
            rawIsaIsInherited = true;
        }

        if (instancesRequireRawIsa) {
            cls->setInstancesRequireRawIsaRecursively(rawIsaIsInherited);
        }
    }
// SUPPORT_NONPOINTER_ISA
#endif

    // Update superclass and metaclass in case of remapping
    cls->setSuperclass(supercls);
    cls->initClassIsa(metacls);

    // Reconcile instance variable offsets / layout.
    // This may reallocate class_ro_t, updating our ro variable.
    if (supercls  &&  !isMeta) reconcileInstanceVariables(cls, supercls, ro);

    // Set fastInstanceSize if it wasn't set already.
    cls->setInstanceSize(ro->instanceSize);

    // Copy some flags from ro to rw
    if (ro->flags & RO_HAS_CXX_STRUCTORS) {
        cls->setHasCxxDtor();
        if (! (ro->flags & RO_HAS_CXX_DTOR_ONLY)) {
            cls->setHasCxxCtor();
        }
    }
    
    // Propagate the associated objects forbidden flag from ro or from
    // the superclass.
    if ((ro->flags & RO_FORBIDS_ASSOCIATED_OBJECTS) ||
        (supercls && supercls->forbidsAssociatedObjects()))
    {
        rw->flags |= RW_FORBIDS_ASSOCIATED_OBJECTS;
    }

    // Connect this class to its superclass's subclass lists
    if (supercls) {
        addSubclass(supercls, cls);
    } else {
        addRootClass(cls);
    }
    

    // Attach categories
    methodizeClass(cls, previously);

    return cls;
}

下面我们就断点调试这个函数,如图所示:


7

这里的cls就是RoPerson。
我们再看下ro这个变量,如图:

8

说明ro已经有了数据。
我们再查看baseMethodList如图所示:
9

这里发现baseMethodList没有方法列表,而RoPerson明明是有方法的,这又是为什么呢?
这是因为这里只是一个基本数据结构,还没有加载进来,我们接着往下分析。

 // Normal class. Allocate writeable class data. ro -> rw
        rw = objc::zalloc();
        rw->set_ro(ro);
        rw->flags = RW_REALIZED|RW_REALIZING|isMeta;
        cls->setData(rw);

这段代码的操作是把ro(就是上面data中的数据)复制到rw中去。
cls->setInstancesRequireRawIsa();这行代码说明了元类的isa地址与类的名字是一样的

 supercls = realizeClassWithoutSwift(remapClass(cls->getSuperclass()), nil);
 metacls = realizeClassWithoutSwift(remapClass(cls->ISA()), nil);
 cls->setSuperclass(supercls);
 cls->initClassIsa(metacls);

这说明了之前介绍的isa的指向和继承链的关系。
我们在这个函数再加一些判断代码,再重新断点调试,如图:


截屏2021-07-17 上午9.51.38.png

接着我们在methodizeClass这个函数也加入测试代码,如图:

10

在这里我们在查看下baseMethodList,如图:
11

还是没有方法,这又是为什么呢,方法列表为什么没有,我们接着分析methodizeClass

methodizeClass分析

我们在methodizeClass这个函数继续执行,如图所示:

12

在这里发现list是有值的,但是打印不出来的。
我们看下** prepareMethodLists**这个函数的代码,如下:

static void 
prepareMethodLists(Class cls, method_list_t **addedLists, int addedCount,
                   bool baseMethods, bool methodsFromBundle, const char *why)
{
    runtimeLock.assertLocked();

    if (addedCount == 0) return;

    // There exist RR/AWZ/Core special cases for some class's base methods.
    // But this code should never need to scan base methods for RR/AWZ/Core:
    // default RR/AWZ/Core cannot be set before setInitialized().
    // Therefore we need not handle any special cases here.
    if (baseMethods) {
        ASSERT(cls->hasCustomAWZ() && cls->hasCustomRR() && cls->hasCustomCore());
    } else if (cls->cache.isConstantOptimizedCache()) {
        cls->setDisallowPreoptCachesRecursively(why);
    } else if (cls->allowsPreoptInlinedSels()) {
#if CONFIG_USE_PREOPT_CACHES
        SEL *sels = (SEL *)objc_opt_offsets[OBJC_OPT_INLINED_METHODS_START];
        SEL *sels_end = (SEL *)objc_opt_offsets[OBJC_OPT_INLINED_METHODS_END];
        if (method_lists_contains_any(addedLists, addedLists + addedCount, sels, sels_end - sels)) {
            cls->setDisallowPreoptInlinedSelsRecursively(why);
        }
#endif
    }

    // Add method lists to array.
    // Reallocate un-fixed method lists.
    // The new methods are PREPENDED to the method list array.

    for (int i = 0; i < addedCount; i++) {
        method_list_t *mlist = addedLists[I];
        ASSERT(mlist);

        // Fixup selectors if necessary
        if (!mlist->isFixedUp()) {
            fixupMethodList(mlist, methodsFromBundle, true/*sort*/);
        }
    }

    // If the class is initialized, then scan for method implementations
    // tracked by the class's flags. If it's not initialized yet,
    // then objc_class::setInitialized() will take care of it.
    if (cls->isInitialized()) {
        objc::AWZScanner::scanAddedMethodLists(cls, addedLists, addedCount);
        objc::RRScanner::scanAddedMethodLists(cls, addedLists, addedCount);
        objc::CoreScanner::scanAddedMethodLists(cls, addedLists, addedCount);
    }
}

** fixupMethodList**再看下这个函数的代码:

static void 
fixupMethodList(method_list_t *mlist, bool bundleCopy, bool sort)
{
    runtimeLock.assertLocked();
    ASSERT(!mlist->isFixedUp());

    // fixme lock less in attachMethodLists ?
    // dyld3 may have already uniqued, but not sorted, the list
    if (!mlist->isUniqued()) {
        mutex_locker_t lock(selLock);
    
        // Unique selectors in list.
        for (auto& meth : *mlist) {
            const char *name = sel_cname(meth.name());
            
            // printf("上面 : %s - %p\n",name,meth.name());
            
            meth.setName(sel_registerNameNoLock(name, bundleCopy));
        }
    }

    // Sort by selector address.
    // Don't try to sort small lists, as they're immutable.
    // Don't try to sort big lists of nonstandard size, as stable_sort
    // won't copy the entries properly.
    if (sort && !mlist->isSmallList() && mlist->entsize() == method_t::bigSize) {
        method_t::SortBySELAddress sorter;
        std::stable_sort(&mlist->begin()->big(), &mlist->end()->big(), sorter);
    }
   
    // Mark method list as uniqued and sorted.
    // Can't mark small lists, since they're immutable.
    if (!mlist->isSmallList()) {
        mlist->setFixedUp();
    }
}
   const char *name = sel_cname(meth.name());
   meth.setName(sel_registerNameNoLock(name, bundleCopy));

这两行代码拿到sel,再把sel和地址放到meth中去,然后根据地址排序。
这个时候我们走完这个函数,然后再打印一下ro,如图:

12

发现baseMethodList依然没有数据,我们明明把它加进来了,这是为什么?我们接着分析。

懒加载类与非懒加载类

在这个函数methodizeClassprepareMethodLists执行完后,直接跳过了if (rwe) rwe->methods.attachLists(&list, 1);这行代码,那么rwe是什么时候赋值的, 我们后面再分析。
我们回过头看下_read_images这个函数的这几行代码,如下:

// Realize non-lazy classes (for +load methods and static instances)
    for (EACH_HEADER) {
        classref_t const *classlist = hi->nlclslist(&count);
        for (i = 0; i < count; i++) {
            Class cls = remapClass(classlist[i]);
            if (!cls) continue;
            
            const char *mangledName = cls->nonlazyMangledName();
            // 测试
            const char *RoPersonName = "RoPerson";

            if (strcmp(mangledName, RoPersonName) == 0) {
                printf("%s Realize non-lazy classes-RO: 要研究的: - %s\n",__func__,mangledName);
            }
            // 测试
            addClassTableEntry(cls);

            if (cls->isSwiftStable()) {
                if (cls->swiftMetadataInitializer()) {
                    _objc_fatal("Swift class %s with a metadata initializer "
                                "is not allowed to be non-lazy",
                                cls->nameForLogging());
                }
                // fixme also disallow relocatable classes
                // We can't disallow all Swift classes because of
                // classes like Swift.__EmptyArrayStorage
            }
            realizeClassWithoutSwift(cls, nil);

        }
    }

Realize non-lazy classes (for +load methods and static instances)这行注释说明只要非懒加载的类实现Load方法就可以断点进入上面的代码。
为了节约内存,提高速度通过懒加载类实现。
如果没有实现load方法的是在哪加载的呢,我们往下分析。
我们在realizeClassWithoutSwift这个函数的开头部分加入以下代码,如下:

   auto ro = (const class_ro_t *)cls->data();
    auto isMeta = ro->flags & RO_META;
    // 测试
    const char *mangledName = cls->nonlazyMangledName();
    const char *RoPersonName = "RoPerson";
    if (strcmp(mangledName, RoPersonName) == 0) {
        printf("%s realizeClassWithoutSwift: 要研究的: - %s\n",__func__,mangledName);

    }
    // 测试

(一定要把RoPerson中的load方法关掉)我们运行,断点,并bt打印堆栈,如图:


13

realizeClassWithoutSwift是由realizeClassMaybeSwiftMaybeRelock调起的,而它又是lookUpImpOrForward调起的。
这也说明了只要在类发送消息的时候,类会进行加载

14

分类的本质探索

realizeClassWithoutSwift这个函数有以下一行代码,如下所示:

// Attach categories
methodizeClass(cls, previously);

这行代码对我们的方法,协议有什么影响,我们往下分析。
我们在main函数加RoPerson的分类,如下:

@interface RoPerson (RO) 
@property (nonatomic, copy) NSString *cate_name;
@property (nonatomic, assign) int cate_age;

- (void)cate_instanceMethod1;
- (void)cate_instanceMethod2;
+ (void)cate_classMethod3;

@end

@implementation RoPerson (RO)
- (void)cate_instanceMethod1{
    NSLog(@"%s",__func__);
}
- (void)cate_instanceMethod2{
    NSLog(@"%s",__func__);
}
+ (void)cate_classMethod3{
    NSLog(@"%s",__func__);
}
@end

我们用clang命令把它翻译成C++代码。
在最后面我们发现以下代码:

static struct _category_t *L_OBJC_LABEL_CATEGORY_$ [1] __attribute__((used, section ("__DATA, __objc_catlist,regular,no_dead_strip")))= {
    &_OBJC_$_CATEGORY_RoPerson_$_RO,
};

这行也就是RoPerson的分类,我们看下_category_t是什么类型,搜索后,如下:

15

那么分类也是一个结构体,里面有
name分类的名字
const struct _method_list_t *instance_methods;
const struct _method_list_t *class_methods;
为什么对象方法和类方法都在里面呢?
因为分类没有元类的缘故

我们在搜索下** _category_t**关键字,发现以下代码:

static struct _category_t _OBJC_$_CATEGORY_RoPerson_$_RO __attribute__ ((used, section ("__DATA,__objc_const"))) = 
{
    "RoPerson",
    0, // &OBJC_CLASS_$_RoPerson,
    (const struct _method_list_t *)&_OBJC_$_CATEGORY_INSTANCE_METHODS_RoPerson_$_RO,
    (const struct _method_list_t *)&_OBJC_$_CATEGORY_CLASS_METHODS_RoPerson_$_RO,
    (const struct _protocol_list_t *)&_OBJC_CATEGORY_PROTOCOLS_$_RoPerson_$_RO,
    (const struct _prop_list_t *)&_OBJC_$_PROP_LIST_RoPerson_$_RO,
};

为什么这里的name是** RoPerson而不是Ro呢,因为这里只是编译,还没有进入运行时,只是随机赋了个值。
那么这些分析跟我们的源码是否一致,我们在源码中搜索
_category_t**找到以下代码:

struct category_t {
    const char *name;
    classref_t cls;
    WrappedPtr instanceMethods;
    WrappedPtr classMethods;
    struct protocol_list_t *protocols;
    struct property_list_t *instanceProperties;
    // Fields below this point are not always present on disk.
    struct property_list_t *_classProperties;

    method_list_t *methodsForMeta(bool isMeta) {
        if (isMeta) return classMethods;
        else return instanceMethods;
    }

    property_list_t *propertiesForMeta(bool isMeta, struct header_info *hi);
    
    protocol_list_t *protocolsForMeta(bool isMeta) {
        if (isMeta) return nullptr;
        else return protocols;
    }
};

发现有些不一样,比如对象方法和类方法。
那么分类是怎么加载的呢,由于篇幅太长,我们这里先引入一下。

分类加载的引入

我们看下methodizeClass这个函数中的objc::unattachedCategories.attachToClass(cls, previously,
ATTACH_METACLASS);
这行代码,
我们看下attachToClass这个函数,代码如下:

  void attachToClass(Class cls, Class previously, int flags)
    {
        runtimeLock.assertLocked();
        ASSERT((flags & ATTACH_CLASS) ||
               (flags & ATTACH_METACLASS) ||
               (flags & ATTACH_CLASS_AND_METACLASS));

        auto &map = get();
        auto it = map.find(previously);

        if (it != map.end()) {
            category_list &list = it->second;
            if (flags & ATTACH_CLASS_AND_METACLASS) {
                int otherFlags = flags & ~ATTACH_CLASS_AND_METACLASS;
                attachCategories(cls, list.array(), list.count(), otherFlags | ATTACH_CLASS);
                attachCategories(cls->ISA(), list.array(), list.count(), otherFlags | ATTACH_METACLASS);
            } else {
                attachCategories(cls, list.array(), list.count(), flags);
            }
            map.erase(it);
        }
    }

做了一些方法的处理,那么它又是怎么控制的呢,我们继分析,
我们先看下rwe,auto methodizeClass这个函数由这行代码rwe = rw->ext();为rwe控制,我们看下:

15

从上图可以看出extAllocIfNeeded可以条件判断,我们搜下** extAllocIfNeeded,得到如下:
attachCategories在这个函数中找到了调用,在添加分类的时候rwe就是能够赋上值的。
addMethods_finish添加方法的时候也会赋值。
class_addProtocol添加协议的时候也会赋值。
_class_addProperty添加属性的时候也会赋值。
objc_duplicateClass重命名的时候也会赋值。
也就是说
动态处理时候才会对rwe的处理
我们重点关注
attachCategories分类的加载。
我们搜索
attachCategories**
attachToClass有调用。
load_categories_nolock有调用。
后面会详细介绍。

结语

这篇文章介绍了类的加载大致流程,_objc_init分析,map_images分析,realizeClass的分析,methodizeClass分析,懒加载类与非懒加载类,分类的本质探索,类的加载原理还未介绍完,我们将在类的加载原理(下)再次介绍。

你可能感兴趣的:(iOS类的加载原理(上))