大数据课程L9——网站流量项目的实时业务处理代码

文章作者邮箱:[email protected]              地址:广东惠州

 ▲ 本章节目的

⚪ 掌握网站流量项目的SparkStreaming代码;

⚪ 掌握网站流量项目的HBaseUtil代码;

⚪ 掌握网站流量项目的MysqlUtil代码;

⚪ 掌握网站流量项目的LogBean代码;

⚪ 掌握网站流量项目的TongjiBean代码;

一、SparkStreaming代码

package cn.tedu.kafkasource

import org.apache.kafka.clients.consumer.ConsumerRecord

import org.apache.kafka.common.TopicPartition

import org.apache.kafka.common.serialization.StringDeserializer

import org.apache.spark.SparkConf

import org.apache.spark.streaming.dstream.InputDStream

import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe

import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent

import org.apache.spark.streaming.kafka010._

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.SparkContext

import cn.tedu.pojo.LogBean

import java.util.Calendar

import cn.tedu.dao.HBaseUtil

import cn.tedu.pojo.TongjiBean

import cn.tedu.dao.MysqlUtil

object SparkStreaming {

  def main(args: Array[String]): Unit = {

     val conf= new SparkConf().setMaster("local[3]").setAppName("test01")

            .set("spark.serializer","org.apache.spark.serializer.KryoSerializer") 

    val sc=new SparkContext(conf)   

    val ssc=new StreamingContext(sc, Seconds(5))   

    val kafkaParams: Map[String, Object] = Map[String, Object](

            "bootstrap.servers" -> "hadoop01:9092,hadoop02:9092,hadoop03:9092",

            "key.deserializer" -> classOf[StringDeserializer],

            "value.deserializer" -> classOf[StringDeserializer],

            "group.id" -> "gp2"

        )

    val topics = Array("logdata")

    val kafkaSource=KafkaUtils.createDirectStream[String, String](

            ssc,

            PreferConsistent,

            Subscribe[String, String](topics, kafkaParams)

        ).map(x=>x.value())

    kafkaSource.foreachRDD{rdd=>

     //lines里存储了当前批次内的所有数据 

      val lines=rdd.toLocalIterator

      //遍历迭代器,对每条数据进行处理

      while(lines.hasNext){

        val line=lines.next()

        //第一步:清洗出所需要的业务字段。url,urlname,uvid,ssid,sscount,sstime,cip

        val info=line.split("\\|")

        val url=info(0)

        val urlname=info(1)

        val uvid=info(13)

        val ssid=info(14).split("_")(0)

        val sscount=info(14).split("_")(1)

        val sstime=info(14).split("_")(2)

你可能感兴趣的:(大数据)