- 困惑度的估计
转码的小石
语言模型
固定长度模型的困惑度(Perplexity,PPL)困惑度(PPL)是评估语言模型性能的常用指标。需要注意的是,这个指标专门适用于经典的语言模型(有时称为自回归模型或因果语言模型),而对于像BERT这样的掩码语言模型,则定义不太清楚(请参考模型总结)。经典语言模型:经典语言模型的目标是计算给定一段文本的概率,具体来说,就是计算一个序列中每个token的条件概率,n-gram模型是最基础的经典语言模
- 《大模型应用开发极简入门》随记
hoypte
人工智能
术语:自然语言处理(NLP)人工智能(AI)大预言模型(LLM)机器学习(ML)深度学习(DL)内容LLM概述ML算法被称为人工神经网络DL是ML的一个分支最先开始简单语言模型吗,例如:n-gram模型(通过词频来根据前面的词预测句子里下一个词---可能生成不连贯的词),为了提升性能引入循环神经网络(RNN)和长短期记忆(LSTM)网络---处理大量数据效率还是不行。Transformer架构架构
- 产品经理的人工智能课 02 - 自然语言处理
平头某
人工智能产品经理自然语言处理
产品经理的人工智能课02-自然语言处理1自然语言处理是什么2一个NLP算法的例子——n-gram模型3预处理与重要概念3.1分词Token3.2词向量化表示与Word2Vec4与大语言模型的交互过程参考链接大语言模型(LargeLanguageModels,LLMs)是自然语言处理(NLP)领域的一个重要分支和核心技术,两者关系密切。所以我们先了解一些自然语言处理的基础概念,为后续了解大语言模型做
- 大语言模型应用指南:工作记忆与长短期记忆
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1问题的由来在人工智能的发展过程中,语言模型的研究一直是重要的一环。早期的语言模型,如N-gram,虽然在一定程度上能够捕捉语言的统计规律,但其无法有效处理语言中的长距离依赖性和复杂结构。这主要是因为N-gram模型只能捕捉到词汇之间的局部依赖关系,而无法捕捉到更长范围内的语义信息。1.2研究现状近年来,随着深度学习技术的发展,基于神经网络的语言模型逐渐崭露头角。其中,长短期记忆网
- NLP模型大对比:Transformer >Seq2Seq > LSTM > RNN > n-gram
feifeikon
自然语言处理transformerbert
结论Transformer大于传统的Seq2Seq大于LSTM大于RNN大于传统的n-gramn-gramVSTransformer我们可以用一个图书馆查询的类比来解释它们的差异:一、核心差异对比维度n-gram模型Transformer工作方式固定窗口的"近视观察员"全局关联的"侦探"依赖距离只能看前N-1个词(如3-gram只看前2词)可关注任意距离的上下文语义理解机械统计共现频率理解词语间的
- 深入理解GPT底层原理--从n-gram到RNN到LSTM/GRU到Transformer/GPT的进化
网络安全研发随想
rnngptlstm
从简单的RNN到复杂的LSTM/GRU,再到引入注意力机制,研究者们一直在努力解决序列建模的核心问题。每一步的进展都为下一步的突破奠定了基础,最终孕育出了革命性的Transformer架构和GPT大模型。1.从n-gram到循环神经网络(RNN)的诞生1.1N-gram模型在深度学习兴起之前,处理序列数据主要依靠统计方法,如n-gram模型。N-gram是一种基于统计的语言模型,它的核心思想是:一
- TextCNN:文本卷积神经网络模型
一只天蝎
编程语言---Pythoncnn深度学习机器学习
目录什么是TextCNN定义TextCNN类初始化一个model实例输出model什么是TextCNNTextCNN(TextConvolutionalNeuralNetwork)是一种用于处理文本数据的卷积神经网(CNN)。通过在文本数据上应用卷积操作来提取局部特征,这些特征可以捕捉到文本中的局部模式,如n-gram(连续的n个单词或字符)。定义TextCNN类importtorch.nnasn
- 深度学习100问29:rnn语言模型与传统的语言模型有何不同
不断持续学习ing
人工智能自然语言处理机器学习
嘿,你知道RNNLM和传统语言模型有啥不一样吗?传统语言模型就像个记性不太好的小伙伴。比如那种n-gram语言模型,它只能记住前面几个词,再多就不行啦,就像脑袋里的小抽屉只能装那么点东西。但RNNLM可不一样,它就像有个超级强大的记忆宝盒。通过循环连接的隐藏层,它能记住老长老长一段历史信息呢,说不定能想起好久好久以前出现的词。就好像它有个神奇的小本本,把看到过的词都记下来,随时能翻出来用。传统语言
- 人工智能中的语言模型演变
机器之心AI
人工智能语言模型自然语言处理
令人惊讶的是,语言模型在这些年间已经显著改变了人工智能领域的整体面貌。设计这些模型的目的是为了理解、人类语言的生成和处理,从自然语言处理到机器翻译甚至创意写作,这些模型日趋复杂且多功能,应用范围从自然语言处理到机器翻译,甚至创意写作。本文详细阐述了语言模型在人工智能领域从早期到先进能力的发展过程。早期的语言模型基于统计方法。这些模型通常被称为n-gram模型,通过计算词序列的频率来预测句子中的下一
- Python chardet.detect 字符编码检测
in_tsz
python开发语言
chardet.detect是Python的一个库,用于检测给定字节串的字符编码。其检测原理基于统计学方法。具体来说,chardet.detect使用了一种叫做统计字符n-gram(通常为n=1或n=2)的方法。它会统计字节串中每个字符或字符对出现的频率,并将这些统计结果与预先训练好的字符编码模型进行比较。这些模型包含了不同字符编码所特有的字符频率分布信息。当给定一个字节串时,chardet.de
- 探索NLP中的N-grams:理解,应用与优化
冷冻工厂
程序人生
简介n-gram[1]是文本文档中n个连续项目的集合,其中可能包括单词、数字、符号和标点符号。N-gram模型在许多与单词序列相关的文本分析应用中非常有用,例如情感分析、文本分类和文本生成。N-gram建模是用于将文本从非结构化格式转换为结构化格式的众多技术之一。n-gram的替代方法是词嵌入技术,例如word2vec。N-grams广泛用于文本挖掘和自然语言处理任务。示例通过计算每个唯一的n元语
- NLP_神经概率语言模型(NPLM)
you_are_my_sunshine*
NLP自然语言处理语言模型人工智能
文章目录NPLM的起源NPLM的实现1.构建实验语料库2.生成NPLM训练数据3.定义NPLM4.实例化NPLM5.训练NPLM6.用NPLM预测新词NPLM小结NPLM的起源在NPLM之前,传统的语言模型主要依赖于最基本的N-Gram技术,通过统计词汇的共现频率来计算词汇组合的概率。然而,这种方法在处理稀疏数据和长距离依剌时遇到了困难。NPLM是一种将词汇映射到连续向量空间的方法,其核心思想是利
- NLP_语言模型的雏形N-Gram
you_are_my_sunshine*
NLP自然语言处理语言模型人工智能
文章目录N-Gram模型1.将给定的文本分割成连续的N个词的组合(N-Gram)2.统计每个N-Gram在文本中出现的次数,也就是词频3.为了得到一个词在给定上下文中出现的概率,我们可以利用条件概率公式计算。具体来讲,就是计算给定前N-1个词时,下一个词出现的概率。这个概率可以通过计算某个N-Gram出现的次数与前N-1个词(前缀)出现的次数之比得到4.可以使用这些概率来预测文本中下一个词出现的可
- 自然语言处理——5.2 语言模型(参数估计)
SpareNoEfforts
两个重要概念:训练语料(trainingdata):用于建立模型,确定模型参数的已知语料。最大似然估计(maximumlikelihoodEvaluation,MLE):用相对频率计算概率的方法。最大似然估计求法对于n-gram,参数可由最大似然估计求得:其中,是历史串在给定语料中出现的次数,即,不管是什么。是在给定的条件下出现的相对频度,分子为与同出现的次数。举例例如,给定训练语料:“Johnr
- NLP_统计语言模型的发展历程
you_are_my_sunshine*
NLP自然语言处理语言模型人工智能
文章目录统计语言模型发展的里程碑:上半部分是语言模型技术的进展;下半部分则是词向量(词的表示学习)技术的发展。其中,词向量表示的学习为语言模型提供了更高质量的输入信息(词向量表示)1948年,著名的N-Gram模型诞生,思路是基于前N-1个项目来预测序列中的第N个项目,所谓的“项目”,就是词或者短语。1954年的Bag-of-Words模型是一种简单且常用的文本表示方法,它将文本表示为一个单词的集
- 使用Gensim库对文本进行词袋、TF-IDF和n-gram方法向量化处理
Yuki_lsq
Gensim库简介机器学习算法需要使用向量化后的数据进行预测,对于文本数据来说,因为算法执行的是关于矩形的数学运算,这意味着我们必须将字符串转换为向量。从数学的角度看,向量是具有大小和方向的几何对象,不需过多地关注概念,只需将向量化看作一种将单词映射到数学空间的方法,同时保留其本身蕴含的信息。Gensim是世界上最大的NLP/信息检索Python库之一,兼具内存高效性和可扩展性。Gensim的可扩
- 程序员书单|本月有哪些新书值得关注?
人邮异步社区
程序人生程序员书单
2024年的第一个月,看了一下计算机书籍的榜单,本周有这样几本新书上榜。1、GPT图解大模型是怎样构建的带你从0到1构建大模型,突破语言奥秘,开启智能未来!深入探索自然语言处理技术的核心原理,结合实战,让你成为AI领域的语言模型构建达人!这一本小书,希望从纯技术的角度,为你梳理生成式语言模型的发展脉络,对从N-Gram、Bag-of-Word、Word2Vec、NPLM、RNN、S2S、Atten
- 【自然语言处理】【深度学习】NLP中的N-gram理解
忘却的旋律dw
自然语言处理深度学习easyui
N-gram是自然语言处理(NLP)中的一个概念,它描述的是文本中连续的n个项(通常是单词或字符)。这个概念主要用于语言建模和文本分析中。具体来说:Unigram(1-gram):包含一个单词的序列,例如句子中的单个单词。Bigram(2-gram):包含两个相邻单词的序列。例如,在句子“Ilovenaturallanguageprocessing”中,“Ilove”、“lovenatural”、
- 【自然语言处理】【深度学习】文本向量化、one-hot、word embedding编码
忘却的旋律dw
自然语言处理深度学习
因为文本不能够直接被模型计算,所以需要将其转化为向量把文本转化为向量有两种方式:转化为one-hot编码转化为wordembedding一、one-hot编码在one-hot编码中,每一个token使用一个长度为N的向量表示,N表示词典的数量。即:把待处理的文档进行分词或者是N-gram处理,然后进行去重得到词典。例:假设我们有一个文档:“深度学习”,那么进行one-hot处理后得到的结果如下to
- fastText
吹洞箫饮酒杏花下
Fasttext最大的特点是模型简单,只有一层的隐层以及输出层,因此训练速度非常快,在普通的CPU上可以实现分钟级别的训练,比深度模型的训练要快几个数量级。输入层:为了将wordorder考虑进来,fastext使用了N-gramfeature。这些输入是n-gram向量,这些向量是随机生成的。由于n-gram的量远比word大的多,完全存下所有的n-gram也不现实。Fasttext采用了Has
- python深度学习—第6章(波斯美女)
weixin_42963026
python深度学习美女
第6章深度学习用于文本和序列6.1处理文本数据与其他所有神经网络一样,深度学习模型不会接收原始文本作为输入,它只能处理数值张量。文本向量化(vectorize)是指将文本转换为数值张量的过程。它有多种实现方法。将文本分割为单词,并将每个单词转换为一个向量。将文本分割为字符,并将每个字符转换为一个向量。提取单词或字符的n-gram,并将每个n-gram转换为一个向量。n-gram是多个连续单词或字符
- [学习笔记]刘知远团队大模型技术与交叉应用L1-NLP&Big Model Basics
N刻后告诉你
深度学习读书笔记自然语言处理学习笔记
本节主要介绍NLP和大模型的基础知识。提及了词表示如何从one-hot发展到WordEmbedding。语言模型如何从N-gram发展成预训练语言模型PLMs。然后介绍了大模型在NLP任务上的表现,以及它遵循的基本范式。最后介绍了本课程需要用到的编程环境和GPU服务器。一篇NLP方向的综述推荐AdvancesinNaturalLanguageProcessing-JuliaHirschberg,C
- 自然语言处理中的语言模型
天一生水water
自然语言处理人工智能深度学习
知乎好文章,建议参考学习语言模型语言模型(LanguageModel,LM)是用于计算或预测一系列词语(句子或文本段落)出现概率的统计模型。它们能够基于已知的词序列来预测下一个词或者评估一个句子的语言学合理性。发展历程统计语言模型:N-gram模型:基于前N-1个词预测下一个词。这种模型简单且易于实现,但面临着维度灾难和数据稀疏问题。隐马尔可夫模型(HMM):常用于语音识别和某些类型的文本处理。H
- N-gram 分词
Silence_Dong
概述本课程作业主要借助python工具,实现了N-gram分词中的Unigram和Bigram分词器,并将前向最大切词FMM和后向最大切词的结果作为Baseline,对比分析N-gram分词器在词语切分正确率、词义消歧和新词识别等方面的优势。github地址数据说明本实验使用的语料是人民日报1998年中文标注的语料库,19484条。在处理过程中,按照训练集:测试集=9:1的比例进行随机划分。数据预
- 自然语言处理学习笔记
追求科技的足球
参考:http://fancyerii.github.io/books/word-embedding/1、语言要首先转换成词向量。2、one-hot向量将词转换为二进制且仅有一位为1。缺点:会导致词典非常大,且为一维数据,不容易衡量词义。3、N-Gram语言模型:计算概率和最大似然估计来估计参数4、Word2Vec:CBOW(ContinuousBag-of-Word)SG(Skip-Gram)5
- 语言模型:从n-gram到神经网络的演进
cooldream2009
大模型基础NLP知识语言模型神经网络人工智能n-gramNLP
目录1前言2语言模型的两个任务2.1自然语言理解2.2自然语言生成3n-gram模型4神经网络语言模型5结语1前言语言模型是自然语言处理领域中的关键技术之一,它致力于理解和生成人类语言。从最初的n-gram模型到如今基于神经网络的深度学习模型,语言模型的发展经历了漫长的演进。本文将探讨语言模型的演化历程,介绍不同阶段的技术,并深入探讨神经语言模型的重要性及其对自然语言处理的影响。2语言模型的两个任
- 基于LSTM和N-gram序列的英文文本生成
艾派森
文本分析深度学习lstm数据挖掘深度学习神经网络人工智能
♂️个人主页:@艾派森的个人主页✍作者简介:Python学习者希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录1.项目背景2.数据集介绍3.技术工具4.实验过程4.1数据探索4.2数据预处理4.3标记文本4.4创建N-gram序列4.5填充序列4.6词嵌入4.7模型设计4.8回调4.8编译并训练模型4.9文本生成4.9.1贪婪搜索文本生成4.9.2束搜索文本生
- 文本处理
smile_怡远
深度学习模型不会接收原始文本作为输入,它只能处理数值张量。将文本分解成的单元(单词、字符或n-gram)叫作标记(token),将文本分解成标记的过程叫作分词(tokenization)所有文本向量化过程都是应用某种分词方案,然后将数值向量与生成的标记相关联。将向量与标记相关联的主要方法有两种:做one-hot编码(one-hotencoding)与标记嵌入[tokenembedding,通常只用
- 「X」Embedding in NLP|神经网络和语言模型 Embedding 向量入门
Zilliz Planet
程序人生
在「X」EmbeddinginNLP进阶系列中,我们介绍了自然语言处理的基础知识——自然语言中的Token、N-gram和词袋语言模型。今天,我们将继续和大家一起“修炼”,深入探讨神经网络语言模型,特别是循环神经网络,并简要了解如何生成Embedding向量。01.深入了解神经网络首先,简要回顾一下神经网络的构成,即神经元、多层网络和反向传播算法。如果还想更详细深入了解这些基本概念可以参考其他资源
- 探索人工智能中的语言模型:原理、应用与未来发展
鳗小鱼
人工智能资源分享(resource)人工智能语言模型自然语言处理机器翻译视觉检测机器学习深度学习
导言语言模型在人工智能领域中扮演着重要的角色,它不仅是自然语言处理的基础,也是许多智能系统的核心。本文将深入研究语言模型的原理、广泛应用以及未来发展趋势。1.语言模型的原理统计语言模型:基于概率统计的传统语言模型,如N-gram模型。神经网络语言模型:利用深度学习技术,如循环神经网络(RNN)、长短时记忆网络(LSTM)、和最新的Transformer模型。2.应用领域及典型案例自然语言处理:语言
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s