- 机器学习的数学基础-线性代数
本文用于复习并记录机器学习中的相关数学基础,仅供学习参考。很多总结和例子来源于mml项目(mml-book.github.io)十分感谢这本书的作者,PS:这本书目前没有中文版。线性代数线性方程组矩阵矩阵的加法与乘法矩阵加法矩阵乘法单位矩阵与标量相乘逆与转置逆转置解决线性方程组特解与通解高斯消元法初级变换应用:“-1”trick应用:求逆总结-如何解决线性方程组?向量空间群向量空间向量子空间线性独
- 高斯消元法及其C++实现
Zengtudor
C++算法c++开发语言
深入浅出高斯消元法及其C++实现本文章代码由博主编写但是文章由ChatGPT-o1-mini生成博客食用更佳在计算机算法竞赛中,线性方程组的求解是一个常见且基础的问题。高斯消元法作为一种经典的算法,因其高效和直观的特性,广泛应用于各种编程竞赛和实际问题中。本文将通过一个具体的C++实现,深入浅出地讲解高斯消元法的核心概念、实现细节以及如何应对实际编程中的挑战。一、问题背景高斯消元法(Gaussia
- The 15-th BIT Campus Programming Contest - Onsite Round——J题(枚举优化或拉格朗日插值)
mumei314
组队赛算法
题目链接:https://codeforces.com/gym/102878/problem/J题解这个题有两种做法,第二种做法比较好想,但是需要优化一下。这里先说第一种做法(拉格朗日插值或者高斯消元)首先题目给我们限定了F(i)F(i)F(i)的取值范围,对于每个F(i)F(i)F(i),至多有三种选择:fif_{i}fi,fi−1f_{i}-1fi−1和fi+1f_{i}+1fi+1。因此我们
- 【高斯消元】学习笔记
shy_lihui
算法学习笔记线性代数
洛谷端文章:https://www.luogu.com.cn/article/n5rjrsdw,如无法访问访问https://www.luogu.com.cn/article/n5rjrsdw。理论这个算法可以求nnn元一次方程组的解。举个例子,现在已知有三元一次方程:{x+2y+3z=36−x+y+2z=17x+2z=17\begin{cases}x+2y+3z=36\\-x+y+2z=17\\
- 概率dp总结
new出新对象!
算法动态规划
概率DP用于解决概率问题与期望问题,建议先对概率&期望的内容有一定了解。一般情况下,解决概率问题需要顺序循环,而解决期望问题使用逆序循环,如果定义的状态转移方程存在后效性问题,还需要用到高斯消元来优化。概率DP也会结合其他知识进行考察,例如状态压缩,树上进行DP转移等。我们这一次博客首先来讲dp去求概率的问题,这种问题一般都是顺序向后推的,主要还是dp的状态转移方程式一般还是比较难找到的我们来通过
- 深入解析高斯消元法:原理剖析与C++实战实现
xMathematics
c++算法开发语言
深入解析高斯消元法:原理剖析与C++实战实现一.高斯消元法理论基础1.1线性方程组求解的数学原理线性方程组解的情况由矩阵的秩和行列式特性决定。对于一个包含nnn个未知数、mmm个方程的线性方程组,可将其系数构成系数矩阵AAA,再添上常数项得到增广矩阵A‾\overline{A}A。当系数矩阵的秩rank(A)rank(A)rank(A)等于增广矩阵的秩rank(A‾)rank(\overline{
- 解线性方程组的直接方法:高斯消元法与其程序实现
^ω^宇博
python数值分析python
解线性方程组的直接方法:高斯消元法与其程序实现1.顺序高斯消元法设线性方程组Ax=b\boldsymbol{Ax}=\boldsymbol{b}Ax=b如果akk(k)≠0a_{kk}^{\left(k\right)}\ne0akk(k)=0可以通过高斯消元法转化为等价的三角形线性方程组:[a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮an1an2⋯ann][x1x2⋮xn]=[b1b2⋮bn
- 【算法 | Python】高斯消元法
weixin_43964993
算法python算法pythonnumpy
程序来源:GaussianEliminationArithmeticAnalysis原理说明源代码代码说明原理说明高斯消元法(GaussElimination)【超详解&模板】高斯消元法-百度百科源代码"""Gaussianeliminationmethodforsolvingasystemoflinearequations.Gaussianelimination-https://en.wikip
- AcWing算法基础课笔记——高斯消元
SharkWeek.
AcWing算法笔记数论
高斯消元用来求解方程组a11x1+a12x2+⋯+a1nxn=b1a21x1+a22x2+⋯+a2nxn=b2…an1x1+an2x2+⋯+annxn=bna_{11}x_1+a_{12}x_2+\dots+a_{1n}x_n=b_1\\a_{21}x_1+a_{22}x_2+\dots+a_{2n}x_n=b_2\\\dots\\a_{n1}x_1+a_{n2}x_2+\dots+a_{nn}x
- 【线性代数】列主元法求矩阵的逆
BlackPercy
线性代数Julialang线性代数矩阵机器学习
列主元方法是一种用于求解矩阵逆的数值方法,特别适用于在计算机上实现。其基本思想是通过高斯消元法将矩阵转换为上三角矩阵,然后通过回代求解矩阵的逆。以下是列主元方法求解矩阵AAA的逆的步骤:步骤1:初始化构造增广矩阵[A∣I][A|I][A∣I],其中III是nnn阶单位矩阵。步骤2:列主元选择对于第kkk列(k=1,2,…,nk=1,2,\ldots,nk=1,2,…,n),找到列主元,即找到iki
- 线性代数 --- LU分解(Gauss消元法的矩阵表示)
松下J27
LinearAlgebra线性代数矩阵LU分解高斯消元矩阵运行gaussianLU
Gauss消元法等价于把系数矩阵A分解成两个三角矩阵L和U的乘法首先,LU分解实际上就是用矩阵的形式来记录的高斯消元的过程。其中,对矩阵A进行高斯消元后的结果为矩阵U,是LU分解后的两个三角矩阵中其中之一。U是一个上三角矩阵,U就是上三角矩阵uppertriangle的首字母的大写。高斯消元的每一步都能用基本消元矩阵E来表示。而所有的E都可以收录在一个矩阵当中,我这里叫他Z矩阵。Z矩阵就是集所有基
- 数学基础 -- 线性代数之行阶梯形
sz66cm
线性代数机器学习人工智能
行阶梯形行阶梯形(RowEchelonForm,REF)是线性代数中用于简化矩阵形式的一种方法,常用于求解线性方程组。矩阵经过行变换(如高斯消元法)后可以转换为行阶梯形,它具有以下特点:行阶梯形的定义零行在矩阵的底部:矩阵中如果存在一行全为零的行,这些行必须在矩阵的最下方。每一非零行的首个非零元素为1:这一元素称为该行的主元(leadingentry)。主元是从左到右的第一个非零元素,并且主元必须
- 乘法-逆矩阵
取个名字真难呐
线性代数矩阵算法线性代数
文章目录1.矩阵相乘-5种方式1.1C=AB1.2AX列组合1.3XB行组合1.4列行组合1.5块求和2.高斯消元法求A−1A^{-1}A−12.1求A−1A^{-1}A−12.2推理1.矩阵相乘-5种方式1.1C=AB假设我们要求得矩阵C=AB,可以用如下公式表示cij=∑k=1Naikbkj(1)c_{ij}=\sum_{k=1}^Na_{ik}b_{kj}\tag{1}cij=k=1∑Nai
- 课程大纲:图像处理中的矩阵计算
superdont
计算机视觉图像处理矩阵人工智能
课程名称:《图像处理中的矩阵计算》课程简介:图像处理中的矩阵计算是图像分析与处理的核心部分。本课程旨在教授学员如何应用线性代数中的矩阵计算,以实现各种图像处理技术。我们将通过强调实际应用和实践活动来确保学员能够理解和掌握这些概念。课程大纲:第1章:矩阵计算基础矩阵及其表示方式矩阵四则运算单位矩阵和逆矩阵矩阵的转置线性系统和矩阵的求解(高斯消元法)第2章:图像表示和颜色空间数字图像的矩阵表示灰度图像
- [数学]高斯消元
Waldeinsamkeit41
算法数据结构
介绍用处:求解线性方程组加减消元法和代入消元法这里引用了高斯消元解线性方程组----C++实现_c++用高斯消元法解线性方程组-CSDN博客改成了自己常用的形式:intgauss(){intc,r;//column,rowfor(c=1,r=1;cfabs(a[maxx][c]))maxx=i;if(fabs(a[maxx][c])=c;i--)a[r][i]/=a[r][c];//把现在的第r行
- 06 逆矩阵、列空间与零空间
林炒Lynn
06逆矩阵、列空间与零空间imageimage直观理解这几个概念,计算方法不作讨论,如"Gaussianelimination高斯消元法"和"rowechelonform行阶梯型".Letthecomputerdocomputing!Usefulnessofmatrices矩阵的用途计算机图形学机器人学被广泛应用的一个主要原因就是它能帮助我们求解特定的systemofequations方程组大部分
- 蓝桥杯_数学知识_1 (质数筛法 - 分解质因数 - 约数【约数个数 - 约数之和 - 最大公约数】 )
violet~evergarden
算法蓝桥杯c++
文章目录866.试除法判定质数868.筛质数((朴素)埃氏筛法、线性筛法)判断素数埃式筛法(朴素)线性筛法【分解质因数】869.试除法求约数(试除法)870.约数个数871.约数之和872.最大公约数1.数论【每一步都要想时间复杂度,看能不能做】2.组合计数3.高斯消元4.简单博弈论866.试除法判定质数给定n个正整数ai,判定每个数是否是质数。输入格式第一行包含整数n。接下来n行,每行包含一个正
- 计算机是怎么求解线性方程的(矩阵乘和求逆)
異轩
上回我们说到,高斯老哥用消元法解线性方程,大致步骤呢就是给系数矩阵消元,运气好点呢直接整出上三角系数矩阵,得到方程组的唯一解,运气不行呢,消着消着发现整不出上三角,这时就得再讨论方程是有多解还是无解。这里所说的"运气"呢其实可以根据行列式啊,Ax=0是否有解啊判断得到,具体操作可以看看我聊消元法的那一篇文章。但是,高斯消元法存在一个问题,就是它是给人做的,比如给第一行乘个倍数加到另一行,或者将矩阵
- AcWing.883.高斯消元解线性方程组
Die love 6-feet-under
算法c++笔记
输入一个包含n个方程n个未知数的线性方程组。方程组中的系数为实数。求解这个方程组。下图为一个包含m个方程n个未知数的线性方程组示例:输入格式第一行包含整数nnn。接下来nnn行,每行包含n+1n+1n+1个实数,表示一个方程的nnn个系数以及等号右侧的常数。输出格式如果给定线性方程组存在唯一解,则输出共nnn行,其中第iii行输出第iii个未知数的解,结果保留两位小数。注意:本题有SPJ,当输出结
- C++ 数论相关题目:高斯消元解异或线性方程组
伏城无嗔
数论力扣算法笔记c++算法
输入一个包含n个方程n个未知数的异或线性方程组。方程组中的系数和常数为0或1,每个未知数的取值也为0或1。求解这个方程组。异或线性方程组示例如下:M[1][1]x[1]^M[1][2]x[2]^…^M[1][n]x[n]=B[1]M[2][1]x[1]^M[2][2]x[2]^…^M[2][n]x[n]=B[2]…M[n][1]x[1]^M[n][2]x[2]^…^M[n][n]x[n]=B[n]
- 详解矩阵的LDU分解
唠嗑!
格密码的数学基础算法网络安全线性代数
目录一.矩阵分解二.解方程三.例题说明四.矩阵的LDU分解五.矩阵三角分解的唯一性一.矩阵分解其实我们可以把一个线性系统(LinearSystem)看成两个三角系统(TriangularSystems),本文章将解释为什么可以这么看待解线性方程组,以及这样理解到底有什么好处。我们知道高斯消元法其实跟矩阵的三角分解有关,如下:A=LU其中,A为任意方阵,L为下三角矩阵且对角线处元素均为1,U为上三角
- MIT_线性代数笔记:线性代数常用概念及术语总结
浊酒南街
MIT_线性代数笔记线性代数笔记
目录1.系数矩阵2.高斯消元法3.置换矩阵Permutation4.逆矩阵Inverse5.高斯-若尔当消元法6.矩阵的LU分解7.三角矩阵1.系数矩阵线性代数的基本问题就是解n元一次方程组。例如:二元一次方程组2x−y=0−x+2y=3\begin{align*}&2x-y=0\\&-x+2y=3\end{align*}2x−y=0−x+2y=3写成矩阵形式就是:[2−1−12][xy]=[03
- 数论知识及模板整理
smiling~
数论模板学习笔记算法
目录一、质数的判定1.试除法判定质数2.质因数的分解3.质数筛选法(埃氏筛法+线性筛)4.米勒罗宾素数检测法(快速判断大质数)二、约数相关(1)试除法求约数(2)求约数个数或约数之和(3)求最大公因数/最小公倍数三、欧几里得算法(1)扩展欧几里得算法(2)线性同余方程四、快速幂(1)快速幂算法(2)大数快速幂(降幂公式)(3)快速幂求逆元(费马小定理)五、欧拉函数六、组合数学七、高斯消元八、容斥原
- 第九周学习报告(1.15-1.21)
三冬四夏会不会有点漫长
#算法训练周报学习
知识点,比赛和做题情况知识点终于把acwing的算法基础课全部看完了(是一些简单的算法模板)比赛无做题情况1.CF写了一个教育场次的A题TrickySum(等差数列求和,循环)2.acwing900.(dp的一个模板题)883,884(高斯消元的模板题)885,886,887,888,889(组合数的模板题)890(容斥原理模板题)891,892,893,894(博弈论模板题)894,338,29
- 详解矩阵的三角分解A=LU
唠嗑!
格密码的数学基础算法线性代数网络安全
目录一.求解Ax=b二.上三角矩阵分解三.下三角矩阵分解四.矩阵的三角分解举例1:矩阵三角分解举例2:三角分解的限制举例3:主元和乘法因子均为1举例4:U为单位阵小结一.求解Ax=b我们知道高斯消元法可以对应矩阵的基础变换。先来看我们比较熟悉的Ax=b模型,如下:解这个方程很简单,只需要三步高斯消元步骤,分别乘以2,-1,-1.第一步:第二行减去第一行乘以2倍;第二步:第三行减去第一行乘以-1;第
- c语言求逆矩阵-高斯消元法
不会C语言的男孩
c语言矩阵开发语言
/***A表示输入的矩阵*B表示输出的逆矩阵*n表示秩的大小*/voidGauss(doubleA[][N],doubleB[][N],intn)//这里的n指的是n*n的方阵中的n{inti,j,k;doublemax,temp;doublet[N][N];//临时矩阵//将A矩阵存放在临时矩阵t[n][n]中for(i=0;ifabs(max)){max=t[j][i];k=j;}}//如果主
- 并行程序设计实验——高斯消元
NK.MainJay
c语言
并行程序设计实验——高斯消元一、问题描述熟悉高斯消元法解线性方程组的过程,然后实现SSE算法编程。过程中,自行构造合适的线性方程组,并选取至少2个角度,讨论不同算法策略对性能的影响。可选角度包括但不限于以下几种选项:①相同算法对于不同问题规模的性能提升是否有影响,影响情况如何;②消元过程中采用向量编程的的性能提升情况如何;③回代过程可否向量化,有的话性能提升情况如何;④数据对齐与不对齐对计算性能有
- 二维泊松方程求解-SIP-最速下降法-共轭梯度
CFD_Tyro
1.直接解法:LU分解在前面的内容中曾经提到,使用有限差分或有限体积法通过隐式离散得到的求解形式,其中为系数矩阵。在一定条件下,能够通过因式分解为,其中为下三角矩阵,为上三角矩阵。这样的分解方式在高斯消元中十分有用,对的求解可分为以下两步2.迭代法:incompleteLUdecomposition如果存在一个与近似的矩阵,对做LU分解,我们把这样的步骤称为的不完全LU分解,ILU,即其中为小量。
- HDU-5955 Guessing the Dice Roll(AC自动机、高斯消元)
上总介
文章目录原题链接题意思路推导代码原题链接GuessingtheDiceRoll题意给定N(1≤N≤10)N(1\leqN\leq10)N(1≤N≤10)个长度都为L(1≤L≤10)L(1\leqL\leq10)L(1≤L≤10)的数字序列Ti(1≤i≤10)T_i(1\leqi\leq10)Ti(1≤i≤10),数字序列仅由{1,2,3,4,5,6}\left\{1,2,3,4,5,6\right
- 算法有哪⼏类?
颓特别我废
C语言算法c语言
一、问题按照执⾏功能的不同,可以将算法分为不同的类别,那么算法有哪⼏类?二、解答计算机上的算法按照实现功能可以分为两⼤类:即数值型算法和⾮数值算法。1、数值型算法(NumericalAlgorithms)这类算法主要用于处理数值数据和解决数学问题,它们通常涉及到大量的数学计算,包括但不限于矩阵运算、微积分、线性代数、概率统计、优化问题等。例如,求解方程组的高斯消元法、数值积分方法如辛普森法则、牛顿
- 矩阵求逆(JAVA)利用伴随矩阵
qiuwanchi
利用伴随矩阵求逆矩阵
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(利用伴随矩阵)
* @author 邱万迟
- 单例(Singleton)模式
aoyouzi
单例模式Singleton
3.1 概述 如果要保证系统里一个类最多只能存在一个实例时,我们就需要单例模式。这种情况在我们应用中经常碰到,例如缓存池,数据库连接池,线程池,一些应用服务实例等。在多线程环境中,为了保证实例的唯一性其实并不简单,这章将和读者一起探讨如何实现单例模式。 3.2
- [开源与自主研发]就算可以轻易获得外部技术支持,自己也必须研发
comsci
开源
现在国内有大量的信息技术产品,都是通过盗版,免费下载,开源,附送等方式从国外的开发者那里获得的。。。。。。
虽然这种情况带来了国内信息产业的短暂繁荣,也促进了电子商务和互联网产业的快速发展,但是实际上,我们应该清醒的看到,这些产业的核心力量是被国外的
- 页面有两个frame,怎样点击一个的链接改变另一个的内容
Array_06
UIXHTML
<a src="地址" targets="这里写你要操作的Frame的名字" />搜索
然后你点击连接以后你的新页面就会显示在你设置的Frame名字的框那里
targerts="",就是你要填写目标的显示页面位置
=====================
例如:
<frame src=&
- Struts2实现单个/多个文件上传和下载
oloz
文件上传struts
struts2单文件上传:
步骤01:jsp页面
<!--在进行文件上传时,表单提交方式一定要是post的方式,因为文件上传时二进制文件可能会很大,还有就是enctype属性,这个属性一定要写成multipart/form-data,不然就会以二进制文本上传到服务器端-->
<form action="fileUplo
- 推荐10个在线logo设计网站
362217990
logo
在线设计Logo网站。
1、http://flickr.nosv.org(这个太简单)
2、http://www.logomaker.com/?source=1.5770.1
3、http://www.simwebsol.com/ImageTool
4、http://www.logogenerator.com/logo.php?nal=1&tpl_catlist[]=2
5、ht
- jsp上传文件
香水浓
jspfileupload
1. jsp上传
Notice:
1. form表单 method 属性必须设置为 POST 方法 ,不能使用 GET 方法
2. form表单 enctype 属性需要设置为 multipart/form-data
3. form表单 action 属性需要设置为提交到后台处理文件上传的jsp文件地址或者servlet地址。例如 uploadFile.jsp 程序文件用来处理上传的文
- 我的架构经验系列文章 - 前端架构
agevs
JavaScriptWeb框架UIjQuer
框架层面:近几年前端发展很快,前端之所以叫前端因为前端是已经可以独立成为一种职业了,js也不再是十年前的玩具了,以前富客户端RIA的应用可能会用flash/flex或是silverlight,现在可以使用js来完成大部分的功能,因此js作为一门前端的支撑语言也不仅仅是进行的简单的编码,越来越多框架性的东西出现了。越来越多的开发模式转变为后端只是吐json的数据源,而前端做所有UI的事情。MVCMV
- android ksoap2 中把XML(DataSet) 当做参数传递
aijuans
android
我的android app中需要发送webservice ,于是我使用了 ksop2 进行发送,在测试过程中不是很顺利,不能正常工作.我的web service 请求格式如下
[html]
view plain
copy
<Envelope xmlns="http://schemas.
- 使用Spring进行统一日志管理 + 统一异常管理
baalwolf
spring
统一日志和异常管理配置好后,SSH项目中,代码以往散落的log.info() 和 try..catch..finally 再也不见踪影!
统一日志异常实现类:
[java]
view plain
copy
package com.pilelot.web.util;
impor
- Android SDK 国内镜像
BigBird2012
android sdk
一、镜像地址:
1、东软信息学院的 Android SDK 镜像,比配置代理下载快多了。
配置地址, http://mirrors.neusoft.edu.cn/configurations.we#android
2、北京化工大学的:
IPV4:ubuntu.buct.edu.cn
IPV4:ubuntu.buct.cn
IPV6:ubuntu.buct6.edu.cn
- HTML无害化和Sanitize模块
bijian1013
JavaScriptAngularJSLinkySanitize
一.ng-bind-html、ng-bind-html-unsafe
AngularJS非常注重安全方面的问题,它会尽一切可能把大多数攻击手段最小化。其中一个攻击手段是向你的web页面里注入不安全的HTML,然后利用它触发跨站攻击或者注入攻击。
考虑这样一个例子,假设我们有一个变量存
- [Maven学习笔记二]Maven命令
bit1129
maven
mvn compile
compile编译命令将src/main/java和src/main/resources中的代码和配置文件编译到target/classes中,不会对src/test/java中的测试类进行编译
MVN编译使用
maven-resources-plugin:2.6:resources
maven-compiler-plugin:2.5.1:compile
&nbs
- 【Java命令二】jhat
bit1129
Java命令
jhat用于分析使用jmap dump的文件,,可以将堆中的对象以html的形式显示出来,包括对象的数量,大小等等,并支持对象查询语言。 jhat默认开启监听端口7000的HTTP服务,jhat是Java Heap Analysis Tool的缩写
1. 用法:
[hadoop@hadoop bin]$ jhat -help
Usage: jhat [-stack <bool&g
- JBoss 5.1.0 GA:Error installing to Instantiated: name=AttachmentStore state=Desc
ronin47
进到类似目录 server/default/conf/bootstrap,打开文件 profile.xml找到: Xml代码<bean
name="AttachmentStore"
class="org.jboss.system.server.profileservice.repository.AbstractAtta
- 写给初学者的6条网页设计安全配色指南
brotherlamp
UIui自学ui视频ui教程ui资料
网页设计中最基本的原则之一是,不管你花多长时间创造一个华丽的设计,其最终的角色都是这场秀中真正的明星——内容的衬托
我仍然清楚地记得我最早的一次美术课,那时我还是一个小小的、对凡事都充满渴望的孩子,我摆放出一大堆漂亮的彩色颜料。我仍然记得当我第一次看到原色与另一种颜色混合变成第二种颜色时的那种兴奋,并且我想,既然两种颜色能创造出一种全新的美丽色彩,那所有颜色
- 有一个数组,每次从中间随机取一个,然后放回去,当所有的元素都被取过,返回总共的取的次数。写一个函数实现。复杂度是什么。
bylijinnan
java算法面试
import java.util.Random;
import java.util.Set;
import java.util.TreeSet;
/**
* http://weibo.com/1915548291/z7HtOF4sx
* #面试题#有一个数组,每次从中间随机取一个,然后放回去,当所有的元素都被取过,返回总共的取的次数。
* 写一个函数实现。复杂度是什么
- struts2获得request、session、application方式
chiangfai
application
1、与Servlet API解耦的访问方式。
a.Struts2对HttpServletRequest、HttpSession、ServletContext进行了封装,构造了三个Map对象来替代这三种对象要获取这三个Map对象,使用ActionContext类。
----->
package pro.action;
import java.util.Map;
imp
- 改变python的默认语言设置
chenchao051
python
import sys
sys.getdefaultencoding()
可以测试出默认语言,要改变的话,需要在python lib的site-packages文件夹下新建:
sitecustomize.py, 这个文件比较特殊,会在python启动时来加载,所以就可以在里面写上:
import sys
sys.setdefaultencoding('utf-8')
&n
- mysql导入数据load data infile用法
daizj
mysql导入数据
我们常常导入数据!mysql有一个高效导入方法,那就是load data infile 下面来看案例说明
基本语法:
load data [low_priority] [local] infile 'file_name txt' [replace | ignore]
into table tbl_name
[fields
[terminated by't']
[OPTI
- phpexcel导入excel表到数据库简单入门示例
dcj3sjt126com
PHPExcel
跟导出相对应的,同一个数据表,也是将phpexcel类放在class目录下,将Excel表格中的内容读取出来放到数据库中
<?php
error_reporting(E_ALL);
set_time_limit(0);
?>
<html>
<head>
<meta http-equiv="Content-Type"
- 22岁到72岁的男人对女人的要求
dcj3sjt126com
22岁男人对女人的要求是:一,美丽,二,性感,三,有份具品味的职业,四,极有耐性,善解人意,五,该聪明的时候聪明,六,作小鸟依人状时尽量自然,七,怎样穿都好看,八,懂得适当地撒娇,九,虽作惊喜反应,但看起来自然,十,上了床就是个无条件荡妇。 32岁的男人对女人的要求,略作修定,是:一,入得厨房,进得睡房,二,不必服侍皇太后,三,不介意浪漫蜡烛配盒饭,四,听多过说,五,不再傻笑,六,懂得独
- Spring和HIbernate对DDM设计的支持
e200702084
DAO设计模式springHibernate领域模型
A:数据访问对象
DAO和资源库在领域驱动设计中都很重要。DAO是关系型数据库和应用之间的契约。它封装了Web应用中的数据库CRUD操作细节。另一方面,资源库是一个独立的抽象,它与DAO进行交互,并提供到领域模型的“业务接口”。
资源库使用领域的通用语言,处理所有必要的DAO,并使用领域理解的语言提供对领域模型的数据访问服务。
- NoSql 数据库的特性比较
geeksun
NoSQL
Redis 是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。目前由VMware主持开发工作。
1. 数据模型
作为Key-value型数据库,Redis也提供了键(Key)和值(Value)的映射关系。除了常规的数值或字符串,Redis的键值还可以是以下形式之一:
Lists (列表)
Sets
- 使用 Nginx Upload Module 实现上传文件功能
hongtoushizi
nginx
转载自: http://www.tuicool.com/wx/aUrAzm
普通网站在实现文件上传功能的时候,一般是使用Python,Java等后端程序实现,比较麻烦。Nginx有一个Upload模块,可以非常简单的实现文件上传功能。此模块的原理是先把用户上传的文件保存到临时文件,然后在交由后台页面处理,并且把文件的原名,上传后的名称,文件类型,文件大小set到页面。下
- spring-boot-web-ui及thymeleaf基本使用
jishiweili
springthymeleaf
视图控制层代码demo如下:
@Controller
@RequestMapping("/")
public class MessageController {
private final MessageRepository messageRepository;
@Autowired
public MessageController(Mes
- 数据源架构模式之活动记录
home198979
PHP架构活动记录数据映射
hello!架构
一、概念
活动记录(Active Record):一个对象,它包装数据库表或视图中某一行,封装数据库访问,并在这些数据上增加了领域逻辑。
对象既有数据又有行为。活动记录使用直截了当的方法,把数据访问逻辑置于领域对象中。
二、实现简单活动记录
活动记录在php许多框架中都有应用,如cakephp。
<?php
/**
* 行数据入口类
*
- Linux Shell脚本之自动修改IP
pda158
linuxcentosDebian脚本
作为一名
Linux SA,日常运维中很多地方都会用到脚本,而服务器的ip一般采用静态ip或者MAC绑定,当然后者比较操作起来相对繁琐,而前者我们可以设置主机名、ip信息、网关等配置。修改成特定的主机名在维护和管理方面也比较方便。如下脚本用途为:修改ip和主机名等相关信息,可以根据实际需求修改,举一反三!
#!/bin/sh
#auto Change ip netmask ga
- 开发环境搭建
独浮云
eclipsejdktomcat
最近在开发过程中,经常出现MyEclipse内存溢出等错误,需要重启的情况,好麻烦。对于一般的JAVA+TOMCAT项目开发,其实没有必要使用重量级的MyEclipse,使用eclipse就足够了。尤其是开发机器硬件配置一般的人。
&n
- 操作日期和时间的工具类
vipbooks
工具类
大家好啊,好久没有来这里发文章了,今天来逛逛,分享一篇刚写不久的操作日期和时间的工具类,希望对大家有所帮助。
/*
* @(#)DataFormatUtils.java 2010-10-10
*
* Copyright 2010 BianJing,All rights reserved.
*/
package test;
impor