- 微信小程序和uni-app的区别
cccv工程师
微信小程序uni-appnotepad++
开发语言和框架:Uni-app:Uni-app使用Vue.js框架进行开发,利用Vue的语法和生命周期函数,开发者可以使用熟悉的前端技术栈。微信小程序:微信小程序使用自己的框架,基于WXML(类似于HTML)和WXSS(样式语言)进行开发,需要学习微信小程序独有的语法和组件。平台支持:Uni-app:Uni-app是一个跨平台开发框架,可以将一套代码编译成多个平台的应用,包括微信小程序、H5、Ap
- 啸叫抑制(AFS)从算法仿真到工程源码实现-第一节-效果演示
aflyingwolf_pomelo
语音信号处理算法人工智能
一、概述啸叫抑制算法也叫声反馈抑制,本专题我们讨论啸叫抑制算法的平台搭建,算法仿真和设备端的工程落地实现。完整记录一个扩声系统的搭建。更多资料和代码可以进入https://t.zsxq.com/qgmoN,同时欢迎大家提出宝贵的建议,以共同探讨学习。二、啸叫抑制算法视频演示啸叫抑制算法演示视频三、语谱图3.1产生啸叫效果3.2去啸叫后的效果四、总结这一节我们主要记录了啸叫抑制(去啸叫)算法的效果演
- Python 学习 第五册 深度学习 第1章 什么是深度学习
weixin_38135241
python学习深度学习人工智能
----用教授的方式学习。目录1.1人工智能、机器学习与深度学习1.1.1人工智能1.1.2机器学习1.1.3从数据中学习表示1.1.4深度学习之“深度”1.1.5用三张图理解深度学习的工作原理1.2深度学习之前:机器学习简史1.2.1概率建模1.2.2核方法1.2.3决策树、随机森林与梯度提升机1.2.4深度学习有何不同什么是深度学习?1.1人工智能、机器学习与深度学习三者关系:1.1.1人工智
- MySQL 奇幻之旅:从基础探秘到高级应用魔法
进阶的华夫饼进大厂
mysql数据库
MySQL奇幻之旅:从基础探秘到高级应用魔法在数据库的神秘世界里,MySQL宛如一座蕴藏无尽宝藏的城堡,我怀揣着探索的热情与求知的渴望,踏上了这趟扣人心弦的学习征程。一、MySQL基础:城堡基石的雕琢(一)数据库与表的操作:构建数据的栖息之所数据库创建与管理:绘制数据城堡的蓝图:犹如精心绘制城堡的设计图,我熟练掌握了使用CREATEDATABASE语句创建数据库的魔法咒语,像CREATEDATAB
- 服务器上部署springboot项目学习笔记
Warren98
服务器springboot学习后端阿里云java
Java相关命令运行jar包:在linux中,进入到jar包所在目录后,直接tab补全名称即可java-jarjar包名称查看jar包是否在运行:ps-ef|grepjava终止运行的jar包:kill#是jar包的id根据jar包名称查看运行状态psaux|grepMyBlog-0.0.1-SNAPSHOT.jar设置jar包一直运行每次启动jar包时,都需要打开SSH远程连接工具,比如fina
- 深度学习:让机器学会“思考”的魔法
AI极客Jayden
AI深度学习
文章目录引言:从“鹦鹉学舌”到“举一反三”一、深度学习是什么?1.定义:机器的“大脑”2.核心思想:从数据中“悟”出规律二、深度学习的“大脑”结构:神经网络1.神经元:深度学习的基本单元2.神经网络:多层“神经元”的组合3.深度:为什么需要多层?三、深度学习如何“学习”?1.训练过程:从“笨拙”到“熟练”2.损失函数:衡量“错误”的尺子3.反向传播:从错误中“反思”四、深度学习的“超能力”1.图像
- 珍藏!Java SpringBoot 精品源码合集约惠来袭,获取路径大公开
秋野酱
javaspringboot开发语言
技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。主要内容:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路。文末获取源码联系文末获取源码联
- 相同的问题看看Grok3怎么回答-详细讲讲PPO & GRPO原理
释迦呼呼
AI一千问人工智能深度学习机器学习语言模型算法神经网络计算机视觉
关键要点研究表明,PPO(近端策略优化)是一种稳定高效的强化学习算法,适用于单代理或多代理场景,重点是最大化绝对奖励。GRPO(基于梯度的相对策略优化)似乎是专为多代理系统设计的,优化代理之间的相对表现,目前信息有限,可能较少为人所知。这两个算法在目标和应用领域上有显著差异,PPO更通用,GRPO更适合竞争性多代理环境。关于PPO的解释什么是PPO?PPO,全称近端策略优化,是一种强化学习算法,帮
- 第三十九个问题-详细讲讲PPO & GRPO原理
释迦呼呼
AI一千问人工智能深度学习机器学习语言模型自然语言处理算法
PPO(ProximalPolicyOptimization)原理详解PPO(近端策略优化)是OpenAI于2017年提出的强化学习算法,旨在解决传统策略梯度方法中训练不稳定和样本效率低的问题。其核心思想是通过限制策略更新的幅度,确保新策略不会偏离旧策略太远,从而稳定训练过程。1.策略梯度(PolicyGradient)基础策略梯度方法通过直接优化策略参数θθ来最大化期望回报。目标函数为:J(θ)
- 基于推理的强化学习智能体设计与开发
由数入道
人工智能人工智能多智能体强化学习知识推理
1.理论基础与核心概念1.1推理强化学习(Reasoning-EnhancedRL)定义核心思想:在传统强化学习的马尔可夫决策过程(MDP)基础上,引入符号推理、因果推断和知识引导机制,解决复杂环境中的长程依赖和稀疏奖励问题。数学建模:扩展MDP为R-MDP:⟨S,A,P
- 基于Python+Django的可视化学习系统设计与实现(毕业设计源码+技术文档+系统部署)
逐梦设计
Python毕业设计实战案例pythondjango课程设计vue.js毕业设计源码
博主简介作者简介:Java领域优质创作者、CSDN博客专家、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、
- 机器学习驱动的智能化电池管理技术与应用
满木悦
电池化学机器人化学电池机器学习人工智能硕博研究生
在人工智能与电池管理技术融合的背景下,电池科技的研究和应用正迅速发展,创新解决方案层出不穷。从电池性能的精确评估到复杂电池系统的智能监控,从数据驱动的故障诊断到电池寿命的预测优化,人工智能技术正以其强大的数据处理能力和模式识别优势,推动电池管理领域的技术进步。据最新研究动态,目前在电池管理领域的人工智能应用主要集中在以下几个方面:1.状态估计:包括电池的荷电状态(SOC)和健康状态(SOH)的实时
- 目标检测YOLO实战应用案例100讲-基于深度学习的无人机目标检测算法轻量化研究(中)
林聪木
目标检测YOLO深度学习
目录基于改进YOLOv5的无人机图像实时目标检测4.1引言4.2基于改进YOLOv5的目标检测模型结构4.3消融实验及结果分析4.4算法迁移验证实验基于Jetson-Xavier的模型优化部署5.1引言5.2基于人在回路的目标检测模型裁剪5.3嵌入式实时目标检测交互软件基于深度学习的无人机目标检测算法轻量化研究知识拓展基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的无人机目标检测1.数
- 梯度下降法理论理解
伶星37
机器学习人工智能
梯度下降法:看似原始却透露着机器学习的本质前提:在研究梯度下降方法之前,你要理解矩阵运算(解析解)的方法矩阵运算目前的缺点只能进行对线性函数经行分析,无法对复杂的函数经行分析什么是梯度,以及梯度向量梯度下降的形象例子以及基本思想有三个兄弟被困在山上,得要死,他们目标是看谁尽快找到山谷中的水源老大比较后选择最陡的方向随便探索一下,就朝较低处走去探测几下就走陡峭的方向梯度下降算法的核心思想就是沿着负梯
- MybatisPlus
伶星37
springboot后端
代码部分添加依赖该代码添加位置:就是在springboot配置文件里面的pom.xml里面要添加的东西对新手说的话,如果这一步没有看懂的话,可以去看一下基础,否则这样的话不能做到理解学习//mybatis-plus的一个插件com.baomidoumybatis-plus-boot-starter3.4.2//这个是关于mysql的一种依赖mysqlmysql-connector-java5.1.
- 英伟达开源超强模型Nemotron-70B;OpenAI推出Windows版ChatGPT桌面客户端
go2coding
AI日报chatgpt
AI新闻英伟达开源超强模型Nemotron-70B摘要:英伟达近日开源了新型AI模型Nemotron-70B,迅速超越GPT-4o和Claude3.5Sonnet,成为AI社区的新宠。该模型在多项基准测试中表现优异,采用混合训练方法和人类反馈强化学习,模型权重已在HuggingFace发布。Niemotron-70B的开发基于Llama-3.1,且开源数据集加强其训练效果。分析指出,英伟达的策略是
- 头歌实践教学平台 Python程序设计 实训答案(三)
学习的锅
头哥实践教学平台实训答案python
第七阶段文件实验一文本文件的读取第1关:学习-Python文件之文本文件的读取任务描述本关任务:使用open函数以只写的方式打开文件,打印文件的打开方式。相关知识为了完成本关任务,你需要掌握:文本文件;open函数及其参数;文件打开模式;文件对象常用属性;关闭文件close函数。#请在下面的Begin-End之间按照注释中给出的提示编写正确的代码##########Begin###########
- React Native:跨平台移动应用开发的强大框架
冬冬小圆帽
reactnativereact.jsjavascript
ReactNative介绍ReactNative是由Facebook开发并开源的一款基于JavaScript和React的跨平台移动应用开发框架。它允许开发者使用React的语法和组件模型来构建原生移动应用(iOS和Android)。ReactNative的核心思想是“LearnOnce,WriteAnywhere”,即学习一次,编写多端应用。1.核心特点跨平台开发:使用JavaScript和Re
- AI大模型产品经理学习路线,2025最新,从AI产品经理零基础入门到精通,非常详细收藏我这一篇够了!
AGI-杠哥
人工智能产品经理学习语言模型agi自然语言处理
随着人工智能技术的发展,尤其是大模型(LargeModel)的兴起,越来越多的企业开始重视这一领域的投入。作为大模型产品经理,你需要具备一系列跨学科的知识和技能,以便有效地推动产品的开发、优化和市场化。以下是一份详细的大模型产品经理学习路线,旨在帮助你构建所需的知识体系,从零基础到精通。一、基础知识阶段1.计算机科学基础数据结构与算法:理解基本的数据结构(如数组、链表、树、图等)和常用算法(如排序
- Java 大视界 -- 基于 Java 的大数据机器学习模型的多模态融合技术与应用(143)
青云交
大数据新视界Java大视界java大数据机器学习多模态融合智能安防智能客服数据处理
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 2025年第二届机器学习与神经网络国际学术会议(MLNN 2025)
分享学术科研与论文的禁小默
机器学习神经网络人工智能
重要信息官网:www.icmlnn.org时间:2025年4月22-24日地点:中国-重庆简介2025年第二届机器学习与神经网络国际学术会议(MLNN2025)围绕学习系统与神经网络的核心理论、关键技术和应用展开讨论,涵盖深度学习、计算机视觉、自然语言处理、强化学习等多个子领域,通过特邀报告、主题演讲、海报展示等形式,展示相关领域的最新研究成果和技术创新。征稿主题神经网络机器学习深度学习算法及应用
- 字节跳动离职后,转行学起了AI大模型!该说不说,真的香!!
小城哇哇
人工智能AI大模型语言模型agiaiLLM转行
个人自我介绍鄙人出生于南方小乡镇,为了走出小镇,在当地够拼够努力,不是自夸,确确实实也算得上“别人家的小孩”,至少在学习这件事情少,没有要家里人操过心。高考特别顺利,一个老牌985,具体哪个学校就不说了,不想给母校丢脸。毕业后,也算是“风光”地进入了字节跳动。做的是运维测试。在职期间刚入职的时候真的信心满满⛽️,但才3天就感受到了互联网头部公司的强度不是一般的大。明面上的早十晚八工作制完全不存在,
- 别只会用别人的模型了,自学Ai大模型,顺序千万不要搞反了!刚入门的小白必备!
鸡腿爱学习
人工智能学习自然语言处理服务器数据库
大家好,我是JackBytes,一个专注于将人工智能应用于日常生活的半吊子程序猿,平时主要分享AI、NAS、Docker、搞机技巧、开源项目等。在使用诸如DeepSeek、ChatGPT、豆包、文心一言等大模型之余,你是否知道这些大模型背后的技术原理是什么?假如让你从头开始学习大模型,你知道应该遵循什么样的路线嘛?今天给大家介绍一下Ai大模型的学习路线,顺序千万不要搞反了!,大家可以按照这个路线进
- 01.什么是MQTT?
墨先森
NodeMCU与MQTT物联网
目录00_前言01_简述02_特性03_MQTT运行机制00_前言本系列博客是基于NodeMCU平台来完成的一个物联网小项目,目的在于了解并学习MQTT协议,掌握MQTT协议的作用机制。以上。01_简述以下摘自百度百科MQTT(消息队列遥测传输)是ISO标准(ISO/IECPRF20922)下基于发布/订阅范式的消息协议。它工作在TCP/IP协议族上,是为硬件性能低下的远程设备以及网络状况糟糕的情
- python列表添加元素的三种方法定义集合数据对象_python 学习第三天 可迭代对象(列表,字典,元组和集合)...
weixin_39852491
列表,字典,元组和集合列表list列表是由一系列特定元素组成的,元素和元素之间没有任何关联关系,但他们之间有先后顺序关系列表是一种容器列表是序列的一种列表是可以被改变的序列Python中的序列类型简介(sequence)字符串(str)列表(list)元组(tuple)字节串(bytes)字节数组(bytearray)创建空列表的字面值L=[]#L绑定空列表创建非空列表:L=[1,’two’,3,
- 网安会有35岁中年危机吗,还有网安将来发展怎么样?网络安全工程师可以干到多大年龄
认真写程序的强哥
web安全干货分享黑客技术网络安全渗透测试编程计算机
关于35岁中年危机这个问题,我想说,在网安行业里,这根本就不是个事儿!!与传统的IT行业不同,网安行业更加注重实战经验和技能深度,而不是单一的年龄因素。随着经验的积累,网络安全工程师在面对复杂问题时,反应更快、决策更准,这种价值是无法用年龄来衡量的。所以,只要你保持学习热情,不断提升自己的技能,35岁不仅不是终点,反而可能是你职业生涯的新起点。初入计算机行业的人或者想转行大学计算机相关专业准程序员
- 深度学习--概率
fantasy_arch
深度学习人工智能
1基本概率论1.1假设我们掷骰子,想知道1而不是看到另一个数字的概率,如果骰子是公司,那么所有6个结果(1..6),都有相同的可能发生,因此,我们可以说1发生的概率为1/6.然而现实生活中,对于我们从工厂收到的真实骰子,我们需要检查它是否有瑕疵,唯一的办法就是多投掷骰子,对于每个骰子观察到的[1.2...6]的概率随着投掷次数的增加,越来越接近1/6.导入必要的包%matplotlibinline
- R.E.D.算法:革新文本分类的半监督学习新范式
真智AI
算法r语言分类人工智能学习
随着大型语言模型(LLMs)在解决问题方面的应用进入新时代,只有少数问题仍然存在不尽如人意的解决方案。大多数分类问题(在概念验证层面)可以通过良好的提示工程技术和自适应的上下文学习(ICL)示例,利用LLMs以70-90%的精确度/F1分数来解决。当您希望持续实现高于此水平的性能时——当提示工程不再足够时,会发生什么?分类难题文本分类是监督学习中最古老且最易理解的示例之一。鉴于这一前提,构建能够处
- 【大模型学习路线】从月薪6K到年薪35W,普通二本生转行大模型的逆袭之路:我的500小时崩溃实录与实战秘籍(附保姆级学习路线)
AGI大模型学习
学习人工智能大模型应用程序员AI大模型AI大模型
摘要:26岁机械专业零基础转大模型,被面试官羞辱“非科班别做梦”,5个月死磕源码,现拿下3个大厂offer。踩过所有新人会踩的坑,总结出普通人高效突围的4个阶段+7个杀手级项目。(文末送自研《大模型避坑指南》+120G学习资料包)一、血泪教训:这些弯路我替你走了(小白必看)2023年3月12日,我在工地上画完第108张CAD图纸后,突然收到大学班群消息:“XX同学入职字节AILab,年薪50W+”
- 目前常用的机器视觉工具库总结,选一个适合自己的机器视觉库才是最好的。
yuanpan
计算机视觉图像处理aiAI编程
以下是常用机器视觉工具的总结,包括它们的特点、优点、缺点和是否付费:1.Halcon特点:由MVTec公司开发,专注于工业机器视觉。提供强大的图像处理、模式匹配、OCR和3D视觉功能。优点:高性能,适合复杂的工业应用。提供图形化编程界面(HDevelop),用户友好。支持多种硬件设备(如相机、采集卡)。缺点:付费:价格较高,适合企业级用户。开放性较低,定制化能力有限。学习曲线较高,文档复杂。是否付
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag