yolov5自动训练/预测-小白教程

文章目录

  • 引言
  • 一、配置参数设置
    • 1、数据参数配置
    • 2、模型训练参数配置
    • 3、模型预测参数配置
  • 二、一键训练/预测的sh介绍
    • 1、训练sh文件(train.sh)介绍
    • 2、预测sh文件(detect.sh)介绍
  • 三、本文训练main代码解读
    • 1、训练main函数解读
    • 2、数据加工与参数替换
  • 四、本文预测main代码解读
    • 1、训练main函数解读
    • 2、参数替换
    • 3、自动生成xml文件
  • 五、模型展示
    • 1、模型架构展示
    • 2、训练效果展示
    • 3、预测效果展示

引言

本文章基于客户一键训练与测试需求,我将yolov5模型改成较为保姆级的一键操作的训练/预测方式,也特别适合新手或想偷懒转换数据格式的朋友们。本文一键体现只需图像文件与xml文件,调用train.sh与detect.sh可完成模型的训练与预测。而为完成该操作,模型内嵌入xml转yolov5的txt格式、自动分配训练/验证集、自动切换环境等内容。接下来,我将介绍如何操作,并附修改源码。

源码链接:我已上传个人资源,请自行下载!

一、配置参数设置

该文件是yolo数据的文件,被我修改满足一键训练与测试文件的配置参数,主要包含数据参数配置、训练参数配置与检测参数配置。

1、数据参数配置

数据参数配置为图像与xml路径配置、转换yolov5数据格式保存路径、训练/验证/测试比列分配、对应yolov5数据文件参数配置,详情如下:

# 设置img与xml的文件路径,也可为同一个文件,按照xml选择img
img_path: /home/auto_yolo/data/example_data
xml_path: /home/auto_yolo/data/example_data

# 设置数据集训练与验证集测试的比率,和小于1,通常test比率不设置为0
train_rate: 0.8
val_rate: 0.2
test_rate:
# 设置转换数据保存路径
path: /home/auto_yolo/data/yolo_data
train: images/train
val: images/val
test:  
# Classes
nc: 3
names: ['car', 'moto', 'person'] 

2、模型训练参数配置

模型训练相关设置,若需要设置则对应相应值,否则不填,使用默认设置,其详情如下:

# 训练模型选择参数设置
imgsz:
batch_size: 2
epochs: 
resume: False
device:
workers:
model_scale: s  #模型型号参数,s表示yolov5s模型

3、模型预测参数配置

模型预测相关设置,若需要设置则对应相应值,否则不填,使用默认设置,其详情如下:
特别说明:auto_xml参数表示是否生成xml标签数据


#detect测试参数设置,无需关心上面所有参数
weights: /home/hncy/Project/tj/auto_try/yolov5-6.0/yolov5s.pt
source: /home/hncy/Project/tj/auto_yolo/data/example_data

#测试模型选择参数设置
detect_imgsz:
conf_thres:
iou_thres:
auto_xml: True  # 模型预测自动生成有标注框的xml文件


二、一键训练/预测的sh介绍

1、训练sh文件(train.sh)介绍

训练文件为sh文件,只需通过以下命令,实现训练。

sh train.sh

该文件包含虚拟环境切换与自动调用模型训练,其详情如下:


# train.sh

echo -e "\n"train time $(date "+%Y-%m-%d")"\n"

# 更换虚拟环境

__conda_setup="$('/home/anaconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)"
if [ $? -eq 0 ]; then
	        eval "$__conda_setup"
		    else
			                if [ -f "/home/anaconda3/etc/profile.d/conda.sh" ]; then
						                    . "/home/anaconda3/etc/profile.d/conda.sh"
								                        else
												                            export PATH="/home/anaconda3/bin:$PATH"
															                                fi
fi
unset __conda_setup
conda activate torch1.8

cur_dir=$(cd `dirname $0`;pwd)  # 获得当前路径
echo -e  "\ncur_dir:"${cur_dir}"\n"

yaml_dir=$cur_dir/coco128_auto.yaml
echo -e  "\nyaml_dir:"${yaml_dir}"\n"

save_dir=$cur_dir/runs/train
echo -e "\nsave_dir:"$save_dir"\n"

if [ -d ${save_dir} ];then
	    echo "save_dir 文件存在"
    else
	    echo "save_dir文件不存在-->创建文件"
	    mkdir -p  $save_dir
fi

model_dir=/home/auto_try/yolov5-6.0

cd ${model_dir}

ls


echo -e "\n\n\n\t\t\t start train  ... \n\n\n"

python  train_auto.py  --data $yaml_dir  



2、预测sh文件(detect.sh)介绍

预测文件为sh文件,只需通过以下命令,实现训练。

sh detect.sh

该文件包含虚拟环境切换与自动调用模型预测,其详情如下:


# detect.sh

echo -e "\n"detect time $(date "+%Y-%m-%d")"\n"


# 更换虚拟环境

__conda_setup="$('/home/hncy/anaconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)"
if [ $? -eq 0 ]; then
	        eval "$__conda_setup"
		    else
			                if [ -f "/home/anaconda3/etc/profile.d/conda.sh" ]; then
						                    . "/home/anaconda3/etc/profile.d/conda.sh"
								                        else
												                            export PATH="/home/anaconda3/bin:$PATH"
															                                fi
fi
unset __conda_setup
conda activate torch1.8

cur_dir=$(cd `dirname $0`;pwd)  # 获得当前路径
echo -e  "\ncur_dir:"${cur_dir}"\n"

yaml_dir=$cur_dir/coco128_auto.yaml
echo -e  "\nyaml_dir:"${yaml_dir}"\n"

save_dir=$cur_dir/runs/detect
echo -e "\nsave_dir:"$save_dir"\n"


if [ -d ${save_dir} ];then
	    echo "save_dir 文件存在"
    else
	    echo "save_dir文件不存在-->创建文件"
	    mkdir -p  $save_dir
fi

model_dir=/home/auto_try/yolov5-6.0

cd ${model_dir}

ls


echo -e "\n\n\n\t\t\t start detect  ... \n\n\n"

python  detect_auto.py  --data $yaml_dir  

三、本文训练main代码解读

1、训练main函数解读

可看出训练main函数多了replace_parameter(opt)函数,该函数为数据加工处理。

if __name__ == "__main__":

    opt = parse_opt()
    opt=replace_parameter(opt)
    main(opt)

2、数据加工与参数替换

数据转换主要将xml文件转成txt文件格式,可参考我的博客,xml转txt博客点击这里
。另一个是模型参数更换,其代码如下:


def replace_parameter(opt):
    cfg_yaml=product_yolo_dataset(opt.data)

    if cfg_yaml['imgsz'] is not None: opt.imgsz=cfg_yaml['imgsz']
    if cfg_yaml['batch_size'] is not None: opt.batch_size = cfg_yaml['batch_size']
    if cfg_yaml['epochs'] is not None: opt.epochs = cfg_yaml['epochs']
    if cfg_yaml['resume'] is not None: opt.resume = cfg_yaml['resume']

    if cfg_yaml['model_scale'] =='n':
        opt.weights = ROOT / 'yolov5n.pt'
    elif cfg_yaml['model_scale'] =='s':
        opt.weights = ROOT / 'yolov5s.pt'
    elif cfg_yaml['model_scale'] =='m':
        opt.weights = ROOT / 'yolov5m.pt'

    yaml_parent=Path(opt.data).parent
    opt.project=os.path.join(yaml_parent,'runs','train')

    return opt

四、本文预测main代码解读

1、训练main函数解读

可看出训练main函数多了replace_detect_parameter(opt)函数,该函数为数据加工处理。

if __name__ == "__main__":
    opt = parse_opt()
    opt = replace_detect_parameter(opt)
    main(opt)

2、参数替换

该函数是替换模型预测参数,我将不在介绍,其代码如下:


def replace_detect_parameter(opt):
    cfg_yaml=read_yaml(opt.data)


    if cfg_yaml['weights'] is  None :
        raise FileExistsError("lacking weights path")
    if cfg_yaml['source'] is  None:
        raise FileExistsError("lacking source path")


    opt.weights = cfg_yaml['weights']
    opt.source = cfg_yaml['source']
    opt.auto_xml = True if cfg_yaml['auto_xml'] else False
    if cfg_yaml['detect_imgsz'] is not None : opt.imgsz=cfg_yaml['detect_imgsz']
    if cfg_yaml['iou_thres'] is not None : opt.iou_thres=cfg_yaml['iou_thres']
    if cfg_yaml['conf_thres'] is not None: opt.conf_thres = cfg_yaml['conf_thres']

    yaml_parent=Path(opt.data).parent
    opt.project=os.path.join(yaml_parent,'runs','detect')
    del opt.data
    print_args(FILE.stem, opt)
    return opt

3、自动生成xml文件

我想说预测代码的自动生成xml方法,该部分在检测文件的run函数中,添加内容如下:

if auto_xml:
    create_xml_by_predect_xml(det, im0s.copy(), names, hide_conf, hide_labels, video_num, save_path)
    video_num+=1

我将预测结果生成xml标注,无论预测视频或预测图像均可实现该目的,我不在介绍,读者可查看代码,其调用函数如下:

def create_xml_by_predect_xml(det,img,names,hide_conf,hide_labels,video_num,save_path):

    save_xml = Path(save_path)
    save_xml_parent = save_xml.parent
    save_xml_path = build_dir(os.path.join(save_xml_parent, 'xml_dir'))
    if save_xml.suffix in ['.jpg', '.png', '.bmp']:
        write_img_name = save_xml.name
        save_xml_name = write_img_name.replace(save_xml.suffix, '.xml')
    else:
        write_img_name = 'video_' + str(video_num) + '.jpg'
        save_xml_name = write_img_name.replace('.jpg', '.xml')
    save_xml_img_path = os.path.join(save_xml_path, write_img_name)
    save_xml_xml_path = os.path.join(save_xml_path, save_xml_name)

    bboxes_lst=[]
    cat_lst=[]
    for *xyxy, conf, cls in reversed(det):
        c = int(cls)  # integer class
        label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')

        box = [int(xyxy[0]), int(xyxy[1]), int(xyxy[2]), int(xyxy[3])]
        cat=label.split(' ')[0]
        if cat is not None and box is not None:
            cat_lst.append(cat)
            bboxes_lst.append(box)

    if cat_lst !=[]:
        tree, xml_name = product_xml(write_img_name, bboxes_lst, cat_lst, img=img)
        tree.write(save_xml_xml_path)
        cv2.imwrite(save_xml_img_path,img)

五、模型展示

1、模型架构展示

yolov5自动训练/预测-小白教程_第1张图片

2、训练效果展示

yolov5自动训练/预测-小白教程_第2张图片

3、预测效果展示

yolov5自动训练/预测-小白教程_第3张图片

你可能感兴趣的:(目标检测,YOLO,深度学习,机器学习)