- IDEA快捷键总结
sq0723
代码开发工具集群环境搭建IDEA快捷键
//代码导入******1、ctrl+alt+s设置菜单2、Ctrl+d复制行或者已选代码块3、Alt+/代码自动补全4、Alt+insert自动生成构造方法等5、Ctrl+shift+回车自动补全结尾6、Ctrl+j自动代码生成模板,例如psvm,sout等7、Alt+回车导包或者修正已经导入的包///代码编辑**8、Ctrl+alt+l格式化代码9、Ctrl+alt+i代码自动缩进10、Ctr
- IDEA中常用快捷键
以码令天下
后端JAVAjava开发语言
IDEA中的快捷键在IDEA中快速生成if(变量==null):ifn在IDEA中快速生成main方法:psvm在IDEA中快速生成Sytem.out.println():sout删除一行:Ctrl+yIDEA是自动保存的对于目录:左箭头关闭,右箭头打开IDEA中任何窗口的关闭:Esc窗口的变大、变小:shift+Ctrl+F12或者Alt+1切换窗口:Alt+左/右箭头快速运行:Ctrl+shi
- 大模型稀疏动态架构
deepdata_cn
垂域模型语言模型
DeepSeek应用稀疏动态架构(SparseDynamicArchitecture)是其大模型技术的核心创新点。大模型稀疏动态架构是一种用于构建大规模人工智能模型的先进架构,整体提高了模型的效率、灵活性和性能。一、发展历程1.早期探索阶段起源基础:20世纪8090年代的早期机器学习主要集中在决策树、SVM、KNN等经典算法,模型规模小,依赖手工特征。之后在2006年GeoffreyHinton提
- 【故障诊断】基于RIME-CNN-SVM霜冰算法优化卷积神经网络结合支持向量机的故障诊断模型(matlab)
天天科研工作室
故障诊断模型RIME-CNN-SVM故障诊断matlabcnn
【故障诊断】基于RIME-CNN-SVM霜冰算法优化卷积神经网络结合支持向量机的故障诊断模型(matlab)文章目录【故障诊断】基于RIME-CNN-SVM霜冰算法优化卷积神经网络结合支持向量机的故障诊断模型(matlab)文章介绍基本步骤代码分享运行结果参考资料文章介绍基于RIME-CNN-SVM霜冰算法优化卷积神经网络结合支持向量机的故障诊断模型是一种利用MATLAB编程环境,结合RIME-C
- RIME-CNN-SVM故障诊断
九亿AI算法优化工作室&
cnn支持向量机人工智能matlabpython
构建一个高效、准确的基于卷积神经网络(CNN)的电力系统故障识别与分类仿真系统,实现对电力系统故障的精准识别与分类。在这一模型中,CNN被用来执行故障数据的特征提取与抽象化处理,随后,这些经过抽象的特征会被传递给SVM模型,由SVM进一步执行分类与回归分析的任务,从而实现对故障类型的精确判定或故障严重程度的准确评估。为了进一步提升模型的泛化能力与预测精度,引入了雾凇算法来精细调整CNN与SVM的各
- R-CNN架构
人工智能
R-CNN架构架构RCCN由三个模块组成:第一个模块生成与类别无关的区域提议。这些提议定义了我们的检测器可用的候选检测集。第二个模块是一个大型卷积神经网络,它从每个区域中提取固定长度的特征向量。第三个模块是一组特定类别的线性支持向量机(SVM)。虽然R-CNN对特定的区域提议方法不挑剔,但选择性搜索(Selectivesearch)是最常用的方法,以便与之前的检测工作进行有对照的比较。实现在测试时
- 100.13 AI量化面试题:支持向量机(SVM)如何处理高维和复杂数据集?
AI量金术师
金融资产组合模型进化论支持向量机人工智能算法金融python机器学习数学建模
目录0.承前1.解题思路1.1基础概念维度1.2技术实现维度1.3实践应用维度2.核函数实现2.1基础核函数2.2自定义核函数3.特征处理与优化3.1特征工程3.2参数优化4.实践应用策略4.1核函数选择指南4.2性能优化策略5.回答话术0.承前本文通过通俗易懂的方式介绍支持向量机(SVM)如何处理高维和复杂数据集,包括核函数技巧、特征工程和优化方法。如果想更加全面清晰地了解金融资产组合模型进化论
- 机器学习面试笔试知识点-线性回归、逻辑回归(Logistics Regression)和支持向量机(SVM)
qq742234984
机器学习线性回归逻辑回归
机器学习面试笔试知识点-线性回归、逻辑回归LogisticsRegression和支持向量机SVM微信公众号:数学建模与人工智能一、线性回归1.线性回归的假设函数2.线性回归的损失函数(LossFunction)两者区别3.简述岭回归与Lasso回归以及使用场景4.什么场景下用L1、L2正则化5.什么是ElasticNet回归6.ElasticNet回归的使用场景7.线性回归要求因变量服从正态分布
- 线性回归、逻辑回归及SVM
@迷途小书童
机器学习
1,回归(LinearRegression)回归其实就是对已知公式的未知参数进行估计。可以简单的理解为:在给定训练样本点和已知的公式后,对于一个或多个未知参数,机器会自动枚举参数的所有可能取值(对于多个参数要枚举它们的不同组合),直到找到那个最符合样本点分布的参数(或参数组合)。当然,实际运算有一些优化算法,肯定不会去枚举的。注意,回归的前提是公式已知,否则回归无法进行。回归中的公式基本都是数据分
- 逻辑回归不能解决非线性问题,而svm可以解决
江河地笑
机器学习逻辑回归支持向量机算法
逻辑回归和支持向量机(SVM)是两种常用的分类算法,它们在处理数据时有一些不同的特点,特别是在面对非线性问题时。1.逻辑回归逻辑回归本质上是一个线性分类模型。它的目的是寻找一个最适合数据的直线(或超平面),用来将不同类别的数据分开。它的分类决策是基于输入特征的加权和,即:由于逻辑回归是线性模型,因此它只能在数据集是线性可分的情况下表现良好。如果数据的分布是非线性的,逻辑回归可能无法有效地分类,因为
- 基于 STM32 平台的音频特征提取与歌曲风格智能识别系统
赵谨言
论文经验分享毕业设计
标题:基于STM32平台的音频特征提取与歌曲风格智能识别系统内容:1.摘要摘要:本文介绍了一种基于STM32平台的音频特征提取与歌曲风格智能识别系统。该系统通过对音频信号进行特征提取和分析,实现了对歌曲风格的自动识别。在特征提取方面,系统采用了快速傅里叶变换(FFT)和梅尔频率倒谱系数(MFCC)等方法,对音频信号进行了时频域分析和声学特征提取。在歌曲风格识别方面,系统采用了支持向量机(SVM)和
- 基于Simulink的动态响应与稳定性的矩阵变换器建模仿真
小蘑菇二号
手把手教你学MATLAB专栏手把手教你学Simulinksimulink
目录基于Simulink的动态响应与稳定性的矩阵变换器建模仿真1.背景介绍1.1项目背景1.2系统描述1.3应用场景2.具体的仿真建模过程2.1系统模型构建2.1.1矩阵变换器主电路模型2.1.2空间矢量调制(SVM)控制器模型2.1.3PI控制器模型2.1.4负载模型2.2连接各模块2.3添加输出电压测量2.4添加输出显示3.仿真设置与运行3.1设置仿真参数3.2运行仿真3.3分析仿真结果4.结
- Python与R机器学习(1)支持向量机
宠物与不尤编程
左手python右手R支持向量机机器学习pythonr语言
以下是对Python与R在支持向量机(SVM)实现上的核心区别分析及完整示例代码:一、核心差异对比特征Python(scikit-learn)R(e1071/kernlab)核心库sklearn.svm.SVC/SVRe1071::svm()或kernlab::ksvm()语法范式面向对象(先初始化模型后拟合)函数式+公式接口(y~x1+x2)核函数支持linear,poly,rbf,sigmoi
- CentOS 7+GitLab搭建
一路向东-Kevin
开发工具集centosgitlab
内容介绍:CentOS7+GitLab搭建博客地址:[http://blog.csdn.net/kevindgk(http://blog.csdn.net/kevindgk)开发文档地址:https://kevindgk.github.io/版权声明:本文为原创文章,未经允许不得转载联系方式:
[email protected]简介GitlabCentOS环境安装过程下载虚拟机下载CentOSVMwa
- VPP/软件架构
lingshengxiyou
DPDKc++linux开发语言linuxc++服务器网络
一、源码目录(Directorylayout)二、源码分类(Implemetationtaxonomy)vpp数据平面分为四个不同的层:基础架构层:包括vppinfra,vlib,svm和二进制api库。源码:/src/{vppinfra,vlib,svm,vlibapi,vlibmemory}通用网络协议栈层:vnet。源码:/src/vnet应用程序shell:vpp。源码:/src/vpp日
- 数值型特征处理 - 归一化和分桶
Ivanqhz
设计模式javaspark大数据分布式
归一化概述归一化,好像是把数据缩放到某个范围内,比如0到1或者标准化处理。而分桶可能是指把连续的数值分成不同的区间,比如年龄段分成0-18,19-30这样的区间消除特征间的量纲差异,使不同特征具有可比性,适用于依赖距离或梯度的模型(如SVM、神经网络、KNN)最大最小归一化(Min-MaxScaling)将数据线性映射到[0,1]计算公式:xnorm=x−xminxmax−xminx_{norm}
- 【人工智能-初级】第20章 使用 Matplotlib 和 Seaborn 进行数据可视化
若北辰
人工智能信息可视化人工智能matplotlib
【人工智能-初级】系列专栏【人工智能-初级】第1章人工智能概述【人工智能-初级】第2章机器学习入门:从线性回归开始【人工智能-初级】第3章k-最近邻算法(KNN):分类和Python实现【人工智能-初级】第4章用Python实现逻辑回归:从数据到模型【人工智能-初级】第5章支持向量机(SVM):原理解析与代码实现【人工智能-初级】第6章决策树和随机森林:浅显易懂的介绍及Python实践【人工智能-
- 【LSSVM时间序列预测】白鲨算法优化最小二乘支持向量机WSO-LSSVM时序预测未来数据【含Matlab源码 2483期】
Matlab武动乾坤
matlab
Matlab武动乾坤博客之家
- 锂电池剩余寿命预测 | 基于PSO-SVM粒子群优化支持向量机的锂电池剩余寿命预测研究附Matlab参考代码
默默科研仔
锂电池寿命预测支持向量机PSO-SVM粒子群优化支持向量机锂电池剩余寿命预测
基于PSO-SVM粒子群优化支持向量机的锂电池剩余寿命预测研究一、引言1.1、研究背景与意义随着科技的迅速发展,锂电池因其高能量密度、长循环寿命等优点,已广泛应用于移动设备、电动汽车等领域。准确预测锂电池的剩余寿命(RUL),不仅有助于提高设备的运行效率和安全性,还能有效降低维护成本,延长设备使用寿命。因此,锂电池剩余寿命预测研究具有重要的理论和实际应用价值。1.2、研究现状目前,锂电池剩余寿命预
- 数据库第八章:存储引擎
琴剑诗酒
数据库
1.简介相当于Linux文件系统,只不过比文件系统强大2、功能了解数据读写数据安全和一致性提高性能热备份自动故障恢复高可用方面支持存储引擎介绍showengines;CSVMRG_MYISAMMyISAMBLACKHOLEPERFORMANCE_SCHEMAMEMORYARCHIVEInnoDBFEDERATED笔试题:常见的存储引擎?InnoDB,MyISAM,MEMORY,CSVMySQL默认
- 3D数据可视化与SVM分类
t0_54coder
编程问题解决手册3d信息可视化支持向量机个人开发
在数据科学和机器学习中,数据可视化是理解数据分布和模型表现的关键环节。本文将通过一个实例展示如何使用Python的Matplotlib库来绘制3D数据点和SVM分类面的可视化,解决我在编程中遇到的问题。问题背景最近,我在完成一项作业时尝试重现一个3D数据的SVM分类图,但结果只得到了一个空白窗口,这让我很困惑。以下是原始代码:importnumpyasnpfromsklearn.datasetsi
- ide 快捷键 eclipse 快捷键
菜鸟中的渣渣鸟
ideaeclipse编辑器
ideapsvm+Tab生成main方法sout+tab生成输出语句Ctrl+X/Ctrl+Y删除一行Ctrl+D复制一行Ctrl+/或Ctrl+Shift+/注释代码Ctrl+Shift+Z取消撤销Ctrl+O重写方法Ctrl+I实现方法Ctr+shift+U大小写转化Ctrl+Shift+J整合两行为一行Ctrl+Shift+space自动补全代码Alt+Insert生成代码(如GET,SET
- 自定义数据集 使用scikit-learn中svm的包实现svm分类
灵封~
机器学习人工智能
引入必要的库importnumpyasnpfromsklearn.datasetsimportmake_classificationfromsklearn.model_selectionimporttrain_test_splitfromsklearn.svmimportSVCfromsklearn.metricsimportaccuracy_score,classification_report
- 自定义数据集 使用scikit-learn中svm的包实现svm分类
知识鱼丸
machinelearning人工智能
数据集生成:-使用make_classification函数生成包含1000个样本的数据集,设置20个特征,其中10个是有信息的特征,类别数为2,通过设置random_state=42保证每次运行生成的数据相同。数据划分:-使用train_test_split函数将生成的数据集划分为训练集和测试集,测试集占比为20%,同样通过random_state=42保证划分的一致性。SVM模型:-初始化SV
- scikit-learn实现SVM
PeterClerk
支持向量机scikit-learn算法
支持向量机(SVM)是一种监督学习算法,主要用于分类和回归分析。其基本原理是在数据集中找到一个最优的超平面,使得不同类别的数据被最大间隔分开。最大间隔超平面:SVM的目标是找到能够最大化训练样本间隔的超平面。间隔被定义为到最近训练样本点的距离,这些点被称为支持向量。这种策略的优势在于它提供了一种防止模型过拟合的方法,从而提高了泛化能力。核技巧:在实际应用中,许多数据集不是线性可分的,这就需要使用核
- 自定义数据集 使用scikit-learn中SVM的包实现SVM分类
Luzem0319
scikit-learn支持向量机分类
生成自定义数据集生成一个简单的二维数据集,包含两类数据点,分别用不同的标签表示。importnumpyasnpimportmatplotlib.pyplotasplt#生成数据np.random.seed(42)X=np.r_[np.random.randn(100,2)-[2,2],np.random.randn(100,2)+[2,2]]y=[0]*100+[1]*100#可视化数据plt.s
- 自定义数据集 使用scikit-learn中svm的包实现svm分类
sirius12345123
scikit-learn支持向量机分类
importnumpyasnpimportmatplotlib.pyplotaspltfromsklearnimportsvm#定义数据class1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5],[1.5,0.9],[0.9,1.2],[1.1,1.7],[1.4,1.1]])class2_points=np.array([[3.2,3.2],[3.
- 使用numpy自定义数据集,使用scikit-learn中SVM的包实现SVM分类
辞落山
numpyscikit-learn支持向量机
概述:支持向量机(SVM)是一种强大的分类算法,适用于线性和非线性分类问题。本博客将展示如何使用numpy自定义一个数据集,并利用scikit-learn中的SVM实现分类。1.导入必要的库importnumpyasnpfromsklearn.svmimportSVCfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metri
- 自定义数据集 使用scikit-learn中svm的包实现svm分类
Z211613347
python
importnumpyasnpimportmatplotlib.pyplotasplt#定义数据class1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5],[1.5,0.9],[0.9,1.2],[1.1,1.7],[1.4,1.1]])class2_points=np.array([[3.2,3.2],[3.7,2.9],[3.2,2.6],[1.
- 自定义数据集 使用scikit-learn中svm的包实现svm分类
〖是♂我〗
python开发语言
代码:importnumpyasnp#导入用于数值计算的库importmatplotlib.pyplotasplt#导入用于绘图的库#class1_points和class2_points分别定义了两个类别的数据点,二维坐标class1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5],[1.5,0.9],[0.9,1.2],[1.1,1.7],[1.4
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>