- python 连续比较_python实现连续变量最优分箱详解--CART算法
weixin_39834788
python连续比较
关于变量分箱主要分为两大类:有监督型和无监督型对应的分箱方法:A.无监督:(1)等宽(2)等频(3)聚类B.有监督:(1)卡方分箱法(ChiMerge)(2)ID3、C4.5、CART等单变量决策树算法(3)信用评分建模的IV最大化分箱等本篇使用python,基于CART算法对连续变量进行最优分箱由于CART是决策树分类算法,所以相当于是单变量决策树分类。简单介绍下理论:CART是二叉树,每次仅进
- Python机器学习笔记:CART算法实战
战争热诚
完整代码及其数据,请移步小编的GitHub传送门:请点击我如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote前言在python机器学习笔记:深入学习决策树算法原理一文中我们提到了决策树里的ID3算法,C4.5算法,并且大概的了
- ApacheCN 交流社区热点汇总 2019.3
布客飞龙
听说B站可以睡小姐姐?可是。。那个小姐姐就是我鸭!【每日一问】卷积、卷积核、卷积神经网络怎么理解?如果你没有经验怎么办?来ApacheCN免费实习把!出国留学-微信讨论组自然语言处理(NLP)学习路线【每日一问】ID3、C4.5、C5.0和CART有什么联系、区别和优劣?【每日一问】假设模型准确率接近的情况下,模型融合越多越好吗?【每日一问】1000W数据量,喂给xgboost的特征大概是多少维度
- [机器学习]决策树
LBENULL
决策树决策树学习采用的是自顶向下的递归方法,其基本思想是以信息熵为度量构造一颗熵值下降最快的树,到叶子节点处,熵值为0具有非常好的可解释性、分类速度快的优点,是一种有监督学习最早提及决策树思想的是Quinlan在1986年提出的ID3算法和1993年提出的C4.5算法,以及Breiman等人在1984年提出的CART算法工作原理一般的,一颗决策树包含一个根结点、若干个内部节点和若干个叶节点构造构造
- 决策树模型: ID3 、C4.5、C5.0、CART、CHAID、Quest比较
cy^2
机器学习决策树机器学习算法
一、决策树的核心思想 决策树:从根节点开始一步步走到叶子节点(决策),所有的数据最终都会落到叶子节点,既可以做分类也可以做回归。树的组成 -根节点(rootnode):第一个选择点,有零条或者多条出边的点; -内部点(internalnode):只有一条入边并且有两条或多条出边的点; -叶节点(leafnode):最终的决策结果; 决策树学习的目的是为了产生一颗泛化能力强,即处理未见示例
- 推荐收藏 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost总结
Pysamlam
作者:ChrisCaohttps://zhuanlan.zhihu.com/p/75468124一.决策树决策树是一个有监督分类模型,本质是选择一个最大信息增益的特征值进行分割,直到达到结束条件或叶子节点纯度达到阈值。下图是决策树的一个示例图:根据分割指标和分割方法,可分为:ID3、C4.5、CART算法。1.ID3算法:以信息增益为准则来选择最优划分属性信息增益的计算是基于信息熵(度量样本集合纯
- 5000字干货 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost总结
数据不吹牛
算法决策树信息熵大数据机器学习
作者:ChrisCaohttps://zhuanlan.zhihu.com/p/75468124大家好,我是小z今天分享一波机器学习的干货~一.决策树决策树是一个有监督分类模型,本质是选择一个最大信息增益的特征值进行输的分割,直到达到结束条件或叶子节点纯度达到阈值。下图是决策树的一个示例图:根据分割指标和分割方法,可分为:ID3、C4.5、CART算法。1.ID3算法:以信息增益为准则来选择最优划
- 机器学习之决策树(二)
Vophan
今天我们探讨一下有关决策树的剪枝,以及由剪枝引出的一系列问题为什么要剪枝回顾上一节,我们知道决策树的生成是要达到局部最优,那么我们如何理解这个局部最优呢?我想就是将训练集完全分开,然而将训练集完全分开,就会使模型复杂度迅速上升,从而出现过拟合的现象。于是我们就要用到剪枝,剪掉对于分类并不重要的模型特征,从而达到全局最优用于ID3与C4.5的剪枝算法为什么说是用于ID3与C4.5的剪枝算法呢?因为与
- 01-16
姬汉斯
今天看的是算法部分,首先就是C4.5决策树算法,能够对离散型信息数据进行操作,同时补充有属性缺失的相关数据,在决策树构造过程中进行删减处理。然后就是结合此前的概率论的速速贝叶斯算法,和概率论的基本接近,对未知情况的事物进行模拟分析,计算出大致的概率,以进行数据信息分类等操作。
- 决策树基础知识点解读
futurewq
面试决策树机器学习算法
目录ID3算法C4.5算法CART树ID3算法定义:在决策树各个结点上应用信息增益准则选择特征,递归的构建决策树。该决策树是多分支分类。信息增益意义:给定特征X的条件下,使得类别Y的信息的不确定性减少的程度。取值越大越好。定义:集合D的经验熵H(D)与特征A给定条件下D的经验条件熵H(D/A)之差。缺点分支过程中偏向取值较多的属性无法处理连续值和缺失值,只能处理离散值对缺失值敏感。C4.5算法定义
- 决策树相关知识点以及面试题
mym_74
决策树
文章目录基础知识点熵条件熵联合熵交叉熵信息增益信息增益率Gini指数什么是决策树举例决策树怎么生成的ID3算法C4.5算法和其他模型相比决策树的优点基尼指数(CART算法)决策树的生成最小二乘回归树剪枝一些问题参考基础知识点熵熵是一个物理概念,代表一个系统的混乱程度,在信息论里用于表示一个随机变量不确定性的度量,熵越大,不确定性越高。假设$X$是一个离散分布的随机变量,取值有限,那么的熵可以表示为
- ID3决策树算法及其Python实现
Sue hiroshi
决策树python算法
目录一、决策树算法基础理论决策树的学习过程ID3算法二、实现针对西瓜数据集的ID3算法实现代码三、C4.5和CART的算法代码实现C4.5算法CART算法总结参考文章一、决策树算法决策树是一种基于树结构来进行决策的分类算法,我们希望从给定的训练数据集学得一个模型(即决策树),用该模型对新样本分类。决策树可以非常直观展现分类的过程和结果,一旦模型构建成功,对新样本的分类效率也相当高。最经典的决策树算
- C4.5决策树的基本建模流程
今天也要加油丫
机器学习机器学习
C4.5决策树的基本建模流程作为ID3算法的升级版,C4.5在三个方面对ID3进行了优化:(1)它引入了信息值(informationvalue)的概念来修正信息熵的计算结果,以抑制ID3更偏向于选择具有更多分类水平的列进行展开的情况,从而间接地抑制模型过拟合的倾向;(2)C4.5新增了对连续变量的处理方法,采用类似于CART树的方法来寻找相邻取值的中间值作为切分点;(3)C4.5加入了决策树的剪
- ID3, C4.5和CART的异同点
今天也要加油丫
机器学习机器学习
ID3,C4.5和CART都是决策树算法,它们在数据挖掘和机器学习中被广泛应用。下面是它们的一些异同点:相同点:都是用于构建决策树的算法,可以用于分类和回归问题。都使用了树结构来表示决策规则,通过对属性进行划分来进行决策。不同点:ID3是最早的决策树学习算法,它使用信息增益作为属性选择的标准。C4.5是ID3的改进版本,使用信息增益比来选择属性。而CART使用基尼不纯度来选择属性,并且可以生成二叉
- 数据挖掘|决策树算法以及相关算法实现和例题讲解
封印师请假去地球钓鱼
大数据与人工智能数据挖掘算法决策树C4.5ID3
声明:本专栏的所有内容皆是本人接触到的系统学习的老师的讲解内容,仅做整理分享。出处来源:分类问题:决策树+ID3算法+C4.5算法+考试例题讲解_哔哩哔哩_bilibili资料整理:链接:https://pan.baidu.com/s/1q786VaYJ9-1G7ZdfC6KL7A提取码:3k7m一、决策树的概念介绍(一)基础概念介绍
- 决策树(公式推导+举例应用)
Nie同学
机器学习决策树算法机器学习
文章目录引言决策树学习基本思路划分选择信息熵信息增益增益率(C4.5)基尼指数(CART)剪枝处理预剪枝(逐步构建决策树)后剪枝(先构建决策树再剪枝)连续值与缺失值处理连续值处理缺失值处理结论实验分析引言随着信息时代的发展,决策制定变得愈发复杂而关键。在众多决策支持工具中,决策树作为一种直观而强大的工具,在各个领域都得到了广泛的应用。决策树是一种基于树形结构的模型,通过一系列的决策节点和分支来模拟
- 11.决策树的划分基础:信息熵
坛城守护者
划分数据集是决策树算法的关键。划分的方法也多种多样,有ID3,C4.5,CART等。ID3:基于信息熵来选择最佳的测试属性,其选择了当前样本集中具有最大信息增益值的属性作为测试属性;C4.5:相对ID3来说避免了采用信息增益度量存在的一个缺点,而C4.5采用了信息增益比率来选择分支的准则;CART:与C4.5算法类似,只是属性选择的指标采用的是基尼系数;无论哪种方式,都是与信息熵强关联的,因此,我
- 决策树模型
歌者文明
决策树算法机器学习
决策书就是一种树状的模型,可以用来做分类和回归。这种分类方式很好理解,相当于分岔路一样,满足某一个条件就走对应的道路,然后抵达不同的终点。决策树有很多类型,基本的有ID3决策树,C4.5决策树,CART决策树,他们主要经过三个步骤,特征选择,生成决策树,决策树剪枝。1.特征选择如果情况很复杂,条件有许多,成千上万,我们要是不加甄别,那么每一个条件都生成一个支路,那么我们的模型将会十分复杂。在生成一
- 机器学习一些概念
satadriver
机器学习机器学习人工智能
LDA:LDA最大化类间距离,最小化类内距离,使得投影后的不同类别的样本分的更开,属于监督学习。PCA:PCA最小重构误差,使得投影后的值和原来的值尽量接近,属于非监督学习。SVM:最大间隔的优化模型CART算法ID3算法GINI算法C4.5算法Novikoff定理:模糊C均值算法:J(U,V)=∑i=1n∑j=1kuijmdij2∑j=1kuij=1,uij∈[0,1]J(U,V)=\sum_{
- XGBoost理论推导+论文解读-下篇
金鸡湖最后的张万森
集成学习机器学习集成学习机器学习
确定树结构通常采用贪心法,每次尝试分裂一个叶节点,计算分裂后的增益,选增益最大的。这个方法在之前的决策树算法中大量被使用。而增益的计算方式比如ID3的信息增益,C4.5的信息增益率,CART的Gini系数等。而在XGBoost中,计算增益的公式:Gain=12[GL2HL+λ⏟左子树分数+GR2HR+λ⏟右子树分数−(GL+GR)2HL+HR+λ⏟分裂前分数]−γ⏟新叶节点复杂度\text{Gai
- 决策树-ID3,C4.5,CART
莱昂纳多91
决策树直观上,决策树是一个树结构,从根节点开始,测试待分类项中相应的特征属性(每次只测一个特征维度),并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果西瓜书里的图在挑西瓜模型中,首先判断纹理这一特征维度,分成了3个数据集,其中模糊纹理这一波直接是叶子节点,存放决策结果。而从数据的特征空间角度,决策树则是把整个特征空间划分成了若干个超立方体。就像魔方可以是均分空间更多的是不
- (14)监督学习-分类问题-决策树
顽皮的石头7788121
决策树算法分为ID3,C4.5,CART几种。其主要区别在于特征选择的方法不同。1、ID3特征选择方法:信息增益熵H(X)=-plog(p)求和,g(D,A)=H(D)-H(D,A),g越大,说明某一条件下,减少数据不确定性的程度越大。越适合做分类条件特点是:只有树的生成,容易产生过拟合。只能处理离散性数据2、C4.5特征选择方法:信息增益率;信息增益大小没有绝对意义,使用比例对其进行矫正。g1(
- 决策树相关算法_ID3_C45_信息熵_剪枝
沉住气CD
机器学习常用算法算法决策树剪枝数据挖掘机器学习人工智能
决策树算法的主要思想源于Quinlan在1986年提出的ID3算法和1993年提出的C4.5算法,以及由Breiman等人在1984年提出的CART算法,其主要优点是:可读性;分类速度快。决策树学习通常包括3个步骤:特征选择;决策树的生成;决策树的修剪。信息增益为了说明信息增益算法,需要先给出熵entropy的定义,熵表示随机变量的不确定性的度量。设XXX是一个取有限个值的离散随机变量,其概率分布
- 机器学习算法基础——分类模型(二)
三翼鸟数字化技术团队
机器学习算法分类人工智能
引言上回我们讨论了机器学习中的三种重要的分类模型:Logistic回归、朴素贝叶斯、贝叶斯网络,并对这三种模型的数学推导和实例实现有了一个深刻的认识。今天我们继续介绍另外两种基础的分类算法:决策树和随机森林,本期分享的主要任务就是要讨论决策树的生成方法,包括ID3算法、C4.5算法和CART算法,并通过清晰易懂的应用实例解释说明算法的实现细节。相信有了决策树基础,后面再进行随机森林的构建就会变得非
- notes2
lym94
机器学习ROC曲线、AUC、PR曲线等决策树,ID3、C4.5、CART决策树,随机森林、Adaboost、GBDT决策树,XGBoost、LightGBM逻辑回归,L1L2正则化熵,KL散度,交叉熵micro-f1,macro-f1神经网络连续型特征处理决策树分箱BP算法优化器注意力和Softmax的两点有趣发现:鲁棒性和信息量softmax反向传播推导交叉熵函数优于均方差函数的推导和tf/ke
- 【机器学习入门】决策树算法(三):C5.0算法
学不死的狗
机器学习入门机器学习决策树算法
简介:C5.0算法是昆兰在C4.5算法的基础上提出的商用改进版本,目的是对含有大量数据的数据集进行分析。计算过程:C5.0算法的训练过程大致如下。假设训练的样本集S共有n个样本,训练决策树模型的次数为T,用Ct表示t次训练产生的决策树模型,经过T次训练后最终构建的复合决策树模型表示为C*。用表示第i个样本在第t次模型训练中的权重(i=1,2,3,…,n;t=1,2,3,…,T);用表示的归一化因子
- 决策树 C4.5算法
小小程序○
算法决策树机器学习
C4.5算法C4.5算法C4.5算法是Ross对ID3算法的改进用信息增益率来选择属性。ID3选择属性用的是子树的信息增益而C4.5用的是信息增益率在决策树构造过程中进行剪枝对非离散数据也能处理能够对不完整数据进行处理信息增益比(C4.5)gR(D,A)=g(D,A)H(D)g_{R}(D,A)=\frac{g(D,A)}{H(D)}gR(D,A)=H(D)g(D,A)其中,g(D,A)g(D,A
- 分类算法-----决策树(包括ID3,C4.5)
Yt_Sports
机器学习算法机器学习算法决策树
第一篇:决策树学习(MachineLearning&DataMining)引言最近在面试中,除了基础&算法&项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法(当然,这完全不代表你将来的面试中会遇到此类问题,只是因为我的简历上写了句:熟悉常见的聚类&分类算法而已),而我向来恨对一个东西只知其皮毛而不得深入,故写一个有关数据挖掘十大算法的系列文章以作为自己备试之用,甚至以备将来常
- 决策树:从根到叶的智慧之路
_用户昵称_
机器学习决策树算法机器学习
文章目录前言一、什么是决策树?1.分类树和回归树2.基本概念二、决策树的基本算法思想如何选择某个节点的分割条件?1.信息熵Entropy2.信息增益InformationGain(ID3算法)3.增益率GainRatio(C4.5算法)4.基尼指数GiniIndex(CART算法)何时停止分割?三、决策树的构建过程四、决策树的Python实现五、决策树的应用领域六、决策树的优势和不足优势不足七、决
- python机器学习:决策树与随机森林(6)
HarryStudyPython_ing
python机器学习机器学习python决策树金融量化金融
决策树与随机森林决策树部分python机器学习:决策树关于CART与ID3,C4.5附代码(4)随机森林部分#coding=utf-8importnumpyasnpimportdecision_treeclassRandomForest(object):def__init__(self,tree_count=10):self.tree_list=[]self.tree_count=tree_cou
- ztree设置禁用节点
3213213333332132
JavaScriptztreejsonsetDisabledNodeAjax
ztree设置禁用节点的时候注意,当使用ajax后台请求数据,必须要设置为同步获取数据,否者会获取不到节点对象,导致设置禁用没有效果。
$(function(){
showTree();
setDisabledNode();
});
- JVM patch by Taobao
bookjovi
javaHotSpot
在网上无意中看到淘宝提交的hotspot patch,共四个,有意思,记录一下。
7050685:jsdbproc64.sh has a typo in the package name
7058036:FieldsAllocationStyle=2 does not work in 32-bit VM
7060619:C1 should respect inline and
- 将session存储到数据库中
dcj3sjt126com
sqlPHPsession
CREATE TABLE sessions (
id CHAR(32) NOT NULL,
data TEXT,
last_accessed TIMESTAMP NOT NULL,
PRIMARY KEY (id)
);
<?php
/**
* Created by PhpStorm.
* User: michaeldu
* Date
- Vector
171815164
vector
public Vector<CartProduct> delCart(Vector<CartProduct> cart, String id) {
for (int i = 0; i < cart.size(); i++) {
if (cart.get(i).getId().equals(id)) {
cart.remove(i);
- 各连接池配置参数比较
g21121
连接池
排版真心费劲,大家凑合看下吧,见谅~
Druid
DBCP
C3P0
Proxool
数据库用户名称 Username Username User
数据库密码 Password Password Password
驱动名
- [简单]mybatis insert语句添加动态字段
53873039oycg
mybatis
mysql数据库,id自增,配置如下:
<insert id="saveTestTb" useGeneratedKeys="true" keyProperty="id"
parameterType=&
- struts2拦截器配置
云端月影
struts2拦截器
struts2拦截器interceptor的三种配置方法
方法1. 普通配置法
<struts>
<package name="struts2" extends="struts-default">
&
- IE中页面不居中,火狐谷歌等正常
aijuans
IE中页面不居中
问题是首页在火狐、谷歌、所有IE中正常显示,列表页的页面在火狐谷歌中正常,在IE6、7、8中都不中,觉得可能那个地方设置的让IE系列都不认识,仔细查看后发现,列表页中没写HTML模板部分没有添加DTD定义,就是<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3
- String,int,Integer,char 几个类型常见转换
antonyup_2006
htmlsql.net
如何将字串 String 转换成整数 int?
int i = Integer.valueOf(my_str).intValue();
int i=Integer.parseInt(str);
如何将字串 String 转换成Integer ?
Integer integer=Integer.valueOf(str);
如何将整数 int 转换成字串 String ?
1.
- PL/SQL的游标类型
百合不是茶
显示游标(静态游标)隐式游标游标的更新和删除%rowtyperef游标(动态游标)
游标是oracle中的一个结果集,用于存放查询的结果;
PL/SQL中游标的声明;
1,声明游标
2,打开游标(默认是关闭的);
3,提取数据
4,关闭游标
注意的要点:游标必须声明在declare中,使用open打开游标,fetch取游标中的数据,close关闭游标
隐式游标:主要是对DML数据的操作隐
- JUnit4中@AfterClass @BeforeClass @after @before的区别对比
bijian1013
JUnit4单元测试
一.基础知识
JUnit4使用Java5中的注解(annotation),以下是JUnit4常用的几个annotation: @Before:初始化方法 对于每一个测试方法都要执行一次(注意与BeforeClass区别,后者是对于所有方法执行一次)@After:释放资源 对于每一个测试方法都要执行一次(注意与AfterClass区别,后者是对于所有方法执行一次
- 精通Oracle10编程SQL(12)开发包
bijian1013
oracle数据库plsql
/*
*开发包
*包用于逻辑组合相关的PL/SQL类型(例如TABLE类型和RECORD类型)、PL/SQL项(例如游标和游标变量)和PL/SQL子程序(例如过程和函数)
*/
--包用于逻辑组合相关的PL/SQL类型、项和子程序,它由包规范和包体两部分组成
--建立包规范:包规范实际是包与应用程序之间的接口,它用于定义包的公用组件,包括常量、变量、游标、过程和函数等
--在包规
- 【EhCache二】ehcache.xml配置详解
bit1129
ehcache.xml
在ehcache官网上找了多次,终于找到ehcache.xml配置元素和属性的含义说明文档了,这个文档包含在ehcache.xml的注释中!
ehcache.xml : http://ehcache.org/ehcache.xml
ehcache.xsd : http://ehcache.org/ehcache.xsd
ehcache配置文件的根元素是ehcahe
ehcac
- java.lang.ClassNotFoundException: org.springframework.web.context.ContextLoaderL
白糖_
javaeclipsespringtomcatWeb
今天学习spring+cxf的时候遇到一个问题:在web.xml中配置了spring的上下文监听器:
<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>
随后启动
- angular.element
boyitech
AngularJSAngularJS APIangular.element
angular.element
描述: 包裹着一部分DOM element或者是HTML字符串,把它作为一个jQuery元素来处理。(类似于jQuery的选择器啦) 如果jQuery被引入了,则angular.element就可以看作是jQuery选择器,选择的对象可以使用jQuery的函数;如果jQuery不可用,angular.e
- java-给定两个已排序序列,找出共同的元素。
bylijinnan
java
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class CommonItemInTwoSortedArray {
/**
* 题目:给定两个已排序序列,找出共同的元素。
* 1.定义两个指针分别指向序列的开始。
* 如果指向的两个元素
- sftp 异常,有遇到的吗?求解
Chen.H
javajcraftauthjschjschexception
com.jcraft.jsch.JSchException: Auth cancel
at com.jcraft.jsch.Session.connect(Session.java:460)
at com.jcraft.jsch.Session.connect(Session.java:154)
at cn.vivame.util.ftp.SftpServerAccess.connec
- [生物智能与人工智能]神经元中的电化学结构代表什么?
comsci
人工智能
我这里做一个大胆的猜想,生物神经网络中的神经元中包含着一些化学和类似电路的结构,这些结构通常用来扮演类似我们在拓扑分析系统中的节点嵌入方程一样,使得我们的神经网络产生智能判断的能力,而这些嵌入到节点中的方程同时也扮演着"经验"的角色....
我们可以尝试一下...在某些神经
- 通过LAC和CID获取经纬度信息
dai_lm
laccid
方法1:
用浏览器打开http://www.minigps.net/cellsearch.html,然后输入lac和cid信息(mcc和mnc可以填0),如果数据正确就可以获得相应的经纬度
方法2:
发送HTTP请求到http://www.open-electronics.org/celltrack/cell.php?hex=0&lac=<lac>&cid=&
- JAVA的困难分析
datamachine
java
前段时间转了一篇SQL的文章(http://datamachine.iteye.com/blog/1971896),文章不复杂,但思想深刻,就顺便思考了一下java的不足,当砖头丢出来,希望引点和田玉。
-----------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第二课
dcj3sjt126com
englishword
money 钱
paper 纸
speak 讲,说
tell 告诉
remember 记得,想起
knock 敲,击,打
question 问题
number 数字,号码
learn 学会,学习
street 街道
carry 搬运,携带
send 发送,邮寄,发射
must 必须
light 灯,光线,轻的
front
- linux下面没有tree命令
dcj3sjt126com
linux
centos p安装
yum -y install tree
mac os安装
brew install tree
首先来看tree的用法
tree 中文解释:tree
功能说明:以树状图列出目录的内容。
语 法:tree [-aACdDfFgilnNpqstux][-I <范本样式>][-P <范本样式
- Map迭代方式,Map迭代,Map循环
蕃薯耀
Map循环Map迭代Map迭代方式
Map迭代方式,Map迭代,Map循环
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年
- Spring Cache注解+Redis
hanqunfeng
spring
Spring3.1 Cache注解
依赖jar包:
<!-- redis -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redis</artifactId>
- Guava中针对集合的 filter和过滤功能
jackyrong
filter
在guava库中,自带了过滤器(filter)的功能,可以用来对collection 进行过滤,先看例子:
@Test
public void whenFilterWithIterables_thenFiltered() {
List<String> names = Lists.newArrayList("John"
- 学习编程那点事
lampcy
编程androidPHPhtml5
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- 架构师之流处理---------bytebuffer的mark,limit和flip
nannan408
ByteBuffer
1.前言。
如题,limit其实就是可以读取的字节长度的意思,flip是清空的意思,mark是标记的意思 。
2.例子.
例子代码:
String str = "helloWorld";
ByteBuffer buff = ByteBuffer.wrap(str.getBytes());
Sy
- org.apache.el.parser.ParseException: Encountered " ":" ": "" at line 1, column 1
Everyday都不同
$转义el表达式
最近在做Highcharts的过程中,在写js时,出现了以下异常:
严重: Servlet.service() for servlet jsp threw exception
org.apache.el.parser.ParseException: Encountered " ":" ": "" at line 1,
- 用Java实现发送邮件到163
tntxia
java实现
/*
在java版经常看到有人问如何用javamail发送邮件?如何接收邮件?如何访问多个文件夹等。问题零散,而历史的回复早已经淹没在问题的海洋之中。
本人之前所做过一个java项目,其中包含有WebMail功能,当初为用java实现而对javamail摸索了一段时间,总算有点收获。看到论坛中的经常有此方面的问题,因此把我的一些经验帖出来,希望对大家有些帮助。
此篇仅介绍用
- 探索实体类存在的真正意义
java小叶檀
POJO
一. 实体类简述
实体类其实就是俗称的POJO,这种类一般不实现特殊框架下的接口,在程序中仅作为数据容器用来持久化存储数据用的
POJO(Plain Old Java Objects)简单的Java对象
它的一般格式就是
public class A{
private String id;
public Str