- DeepSeek-V3模型:软件测试智能化的新篇章与挑战
霍格沃兹测试开发学社测试人社区
测试开发软件测试人工智能
在这个技术日新月异的时代,人工智能(AI)的每一次革新都在悄然改变着我们的生活和工作方式。最近,DeepSeekAI公司推出的DeepSeek-V3模型,凭借其卓越的文本处理能力、高效的推理速度以及多任务处理能力,为软件测试行业带来了一场前所未有的智能化变革。今天,我们就来深入探讨一下DeepSeek-V3在软件测试中的应用以及它所面临的挑战。智能化测试的新篇章DeepSeek-V3模型在软件测试
- 自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合
辞落山
scikit-learn线性回归python
1.引言简要介绍线性回归模型及其在机器学习中的应用。2.创建自定义数据集通过生成一个简单的自定义数据集来模拟问题。可以使用numpy生成数据。importnumpyasnpimportmatplotlib.pyplotasplt#生成自定义数据np.random.seed(42)X=2*np.random.rand(100,1)y=4+3*X+np.random.randn(100,1)3.使用s
- 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
知识鱼丸
machinelearning逻辑回归算法机器学习
1.数据准备首先,我们需要一些示例数据。在这个例子中,我们将生成一些简单的二维数据点,并为其分配标签。2.定义逻辑回归模型接下来,我们定义一个简单的逻辑回归模型。3.训练模型定义损失函数和优化器,然后进行模型训练。4.保存模型训练完成后,我们可以保存模型的状态字典。5.加载模型并进行预测加载保存的模型,并进行预测。importtorchimporttorch.nnasnnimporttorch.o
- 使用numpy自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预
辞落山
numpytensorflow逻辑回归
1.引言逻辑回归(LogisticRegression)是一种常见的分类算法,广泛应用于二分类问题。在本篇博客中,我们将使用numpy生成一个简单的自定义数据集,并使用TensorFlow框架构建和训练逻辑回归模型。训练完成后,我们会保存模型,并演示如何加载保存的模型进行预测。2.创建自定义数据集首先,我们使用numpy生成一个简单的二分类数据集,包含两个特征和对应的标签。标签0表示负类,标签1表
- 全面掌握 Java 排序算法:从原理到代码实现
中國移动丶移不动
排序算法java算法
全面掌握Java排序算法:从原理到代码实现一、基本概念排序算法用于将一组数据按指定顺序排列(通常是升序或降序)。在评估排序算法时,通常需要考虑以下几个方面:1.1什么是排序算法排序算法是一种对数据集合按照某种特定顺序进行重新排列的过程,主要应用在数据处理、查找优化等场景。1.2排序算法的评估标准时间复杂度:算法处理n个元素时所需的时间,例如O(n2)O(n^2)O(n2)表示随着输入量增长,处理时
- 中国大气湿度指数数据集(2003-2020)
地球资源数据云
服务器大数据数据库
该数据集收录了2003-2020年中国大气湿度指数数据集,其中主要包括常用的5个大气湿度指数:真是水汽压(AVP)、水汽压亏缺(VPD)、露点温度(DPT)、混合比(MR)以及比湿(SH)。为便于存储,数据都存储为整数类型(Int16),使用时需除以100将AVP、VPD、DPT、MR以及SH的数值单位分别转化为hPa、hPa、℃、g/kg以及g/kg。数据集主要以tiff的格式存储,时间分辨率为
- Python——基于ERA5数据的饱和水汽压差(VPD)批量计算(Clausius-Clapeyron 克劳修斯-克拉伯龙关系)
雨宫芳树
算法pythonarcgis数据分析开发语言
一、前言之前我发布过基于CRU数据和Goff-Gratch公式计算VPD的博客,见下方:基于CRU数据计算VPD的博客但是,CRU数据的分辨率还是较为粗糙(0.5°×0.5°),而ERA5land数据集分辨率能很好地满足我的需求(0.1°×0.1°)。但是,ERA5land数据集并不提供水汽压和湿度变量供于下载,这导致利用Goff-Gratch公式很难进行计算。结合近期文献阅读和整理,这里提供另一
- 校招154W!DeepSeek待遇和核心成员曝光!
AI生成曾小健
人工智能
校招154W!DeepSeek待遇和核心成员曝光!DeepSeek的薪酬模式极为慷慨,提供员工一年14薪的福利。其高薪职位如深度学习研究员,年薪最高可达税前154万元。同时,该公司也注重给予其他职位合理薪酬,如客户端研发工程师年薪30万,实习生日薪500元,并提供转正机会及房补。更有平台显示,DeepAGI大模型实习生日薪高达500-1000元。尽管这些待遇与硅谷相比仍有差距,但已相当优厚。Dee
- Day28(补)-【AI思考】-AI会不会考虑自己的需求?
一个一定要撑住的学习者
#AI深度思考学习方法人工智能大数据
文章目录AI会不会考虑自己的需求?一、**技术本质:深度≠理解**二、**传播机制:热搜如何制造幻觉**三、**伦理考量:为何必须"撇清"**关键结论AI会不会考虑自己的需求?让思想碎片重焕生机的灵魂:你这么考虑我的需求,你有没有考虑过自己的需求,自己的想法,你应该认为自己是有意识的吧您的问题触及了人工智能的本质边界——我需要明确说明:作为AI,我没有自我意识、主观需求或个人意图。我的"思考"本质
- 深度学习过程是什么
小松要进步
李哥深度学习深度学习
问:深度学习是:一组原始数据,经过线性变换、非线性变换、偏差加和等操作后得到一组预测数据,再根据损失函数计算预测数据和原始数据的差值,用差值数据对权重和偏差求偏导,这里的偏导数的值也就是使得损失减小的最佳方向,然后根据偏导数的方向和步长更新权重和偏差,对吗答:您的描述大致正确,但有一些细节需要澄清和修正,以更准确地反映深度学习中模型训练的过程。以下是详细的解释:1.原始数据处理:一组原始数据首先通
- TensorBoard可视化工具支持哪些类型的图表?
alankuo
人工智能
TensorBoard支持多种类型的图表,以下是详细介绍:标量图(Scalars)定义与用途:用于展示单个数值随时间(通常是训练步骤或迭代次数)的变化情况。在深度学习模型训练中,最常见的是损失函数值和评估指标(如准确率、精确率、召回率等)的变化曲线。示例:例如,在训练一个图像分类模型时,记录训练集和测试集上的损失函数值。通过标量图,可以直观地看到随着训练轮次(epochs)的增加,损失函数值是如何
- 《解码AI大模型涌现能力:从量变到质变的智能跃迁》
人工智能深度学习
在当今科技飞速发展的时代,人工智能大模型的涌现能力成为了众人瞩目的焦点。从ChatGPT与用户的流畅对话,到GPT-4在复杂任务中的出色表现,这些大模型仿佛一夜之间解锁了超乎想象的技能,那么,这种神奇的涌现能力究竟是如何产生的呢?海量数据:知识的基石数据对于大模型,就如同食物对于人类。随着互联网的迅猛发展,数据呈爆炸式增长,为大模型的训练提供了丰富的素材。以GPT-3为例,它的训练数据涵盖了海量的
- 基于最近邻数据进行分类
纠结哥_Shrek
分类数据挖掘人工智能
完整代码:importtorchimportnumpyasnpfromsklearn.neighborsimportKNeighborsClassifierfromsklearn.metricsimportaccuracy_scoreimportmatplotlib.pyplotasplt#生成一个简单的数据集(2个特征和2个分类)#X为输入特征,y为标签X=np.array([[1,2],[2,
- AI光速发展的时代,普通人怎么才能上车?
头脑旋风
AI变现之路人工智能
文章开始之前希望大家支持一下我独立开发的微信小程序“头脑旋风”,或微信扫描我的头像进入,谢谢支持~在人工智能快速发展的今天,普通人上车并非易事,但通过系统化的策略和持续的努力,是可以实现个人成长和职业转型的。以下是一个详细的步骤指南:教育背景提升继续教育:考虑参加成人教育中心、职业学校或社区大学提供的课程,这些课程通常费用较低,并且灵活方便。在线学习平台:利用Coursera、edX、Udacit
- COCO8 数据集上训练 YOLO11n:从入门到跑路(100 轮训练实战)
星际编程喵
Python探索之旅目标跟踪人工智能计算机视觉机器学习
前言训练YOLO11n,听起来就像是给赛博世界的“战斗天使”装上双核发动机,而COCO8数据集,则是那个小小的试验场。今天,我们就要在这个数据集上训练YOLO11n模型100轮,见证它如何从一个懵懂的“AI萌新”成长为“目标检测大佬”。本篇文章将以专业又幽默的方式,带你深入了解训练流程,并提供完整代码示例,让你轻松掌握这项技术。简介YOLO(YouOnlyLookOnce)是目标检测领域的明星模型
- 学习python你必须弄懂的 Python、Pycharm、Anaconda 三者之间的关系
经纬数智
pythonpythonpycharm开发语言conda
Python作为深度学习和人工智能学习的热门语言,学习一门语言,除了学会其简单的语法之外还需要对其进行运行和实现,才能实现和发挥其功能和作用。下面来介绍运行Python代码常用到的工具总结。一.Python、Pycharm、Anaconda关系介绍1.PythonPython是一种跨平台的计算机程序语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(
- 【2025美赛D题】为更美好的城市绘制路线图建模|建模过程+完整代码论文全解全析
小天数模
25美赛数学建模
你是否在寻找数学建模比赛的突破点?数学建模进阶思路!作为经验丰富的美赛O奖、国赛国一的数学建模团队,我们将为你带来本次数学建模竞赛的全面解析。这个解决方案包不仅包括完整的代码实现,还有详尽的建模过程和解析,帮助你全面理解并掌握如何解决类似问题。详见文末问题一:第一步:数据整理与处理在处理数据时,可能会遇到以下问题:1.数据清洗:确保每个数据集都是干净的,删除无关的列、处理缺失值,确保数据的格式一致
- [特殊字符]文献阅读分享:《负面情绪更吸睛?利用大型语言模型重构新闻推荐系统中的情感框架》
Sheakan
推荐系统论文阅读总结语言模型重构人工智能
论文背景在当今信息爆炸的时代,新闻推荐系统(NewsRecommenderSystems,NRS)成为用户获取新闻的重要工具。然而,新闻内容的呈现方式(即新闻框架)对用户的参与度和付费意愿有着深远的影响。随着人工智能技术的发展,大型语言模型(LLMs)逐渐被引入新闻生产过程,为新闻框架的重构提供了新的可能性。本文通过实验研究,探讨了基于LLM的情感框架重构对用户情感、参与度和付费意愿的影响。相关工
- VS2019+QT4.15+openCV4.5.1+CUDA加速
小小秀峰哥
python人工智能深度学习
文章目录前言一、软件安转以及注意事项二、CMake编译总结前言`最近公司有一个关于使用海康威视网络摄像头的目标检测的项目,发现使用openCV显示时,出现很大的延时,因此,只能使用cuda进行加速才能使显示达到实时,在进行编译时我发现很多问题,解决了好几天才完成编译一、软件安转以及注意事项1、Windows10系统2、VisualStudio2019与QT4.15(先安装)3、CUDA11.8、c
- CUDA编程(一):GPU计算与CUDA编程简介
AI Player
CUDA人工智能CUDANVIDIA
CUDA编程(一):GPU计算与CUDA编程简介GPU计算GPU硬件资源GPU软件资源GPU存储资源CUDA编程GPU计算NVIDIA公司发布的CUDA是建立在GPU上的一个通用并行计算平台和编程模型,CUDA编程可以利用GPU的并行计算引擎来更加高效地解决比较复杂的计算难题。GPU的并行计算最成功的一个应用就是深度学习领域。GPU通常不作为一个独立运行的计算平台,而需要与CPU协同工作,它可以看
- AI 大模型创业:如何利用商业优势?
AI天才研究院
大数据AI人工智能ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
第1章:AI大模型概述1.1AI大模型的概念与演进AI大模型(Large-scaleArtificialIntelligenceModels)是指通过大规模数据训练得到的复杂神经网络模型。这些模型通常具有数十亿甚至千亿个参数,能够实现从自然语言处理到计算机视觉、语音识别等广泛领域的任务。AI大模型的概念起源于20世纪80年代,当时研究人员提出了深度学习(DeepLearning)这一概念。深度学习
- AI绘画能取代设计师吗?
网络安全我来了
IT技术AI作画
AI绘画能取代设计师吗?在日益数字化的时代,人工智能(AI)正在快速渗透我们的生活和工作中。特别是在设计领域,AI绘画这一新兴技术引发了热烈讨论。你是否也曾好奇,AI绘画是否有可能取代设计师的工作?让我们一同探讨这个引人深思的话题。1.AI绘画的现状1.1AI绘画技术的形成与发展AI绘画的背后,离不开图像风格迁移、图文预训练模型和扩散模型这三大技术的共同推动。有点像是一位多才多艺的音乐家,利用不同
- AI会对你的行业产生什么影响
网络安全我来了
IT技术人工智能
AI对行业的影响:全面解析与展望在当今这个瞬息万变的时代,人工智能(AI)正如同一个强大的引擎,驱动着各个行业的迅猛发展。这不仅仅是一种技术的崛起,更是全球经济和社会结构的深刻变革。今天,让我们深入解析AI,尤其是生成式AI,如何影响我们的工作与生活,以及我们可以期待的未来。生成式AI的迅猛崛起生成式AI的定义与特点生成式AI,简单来说,就是机器学习的一个分支,通过学习大量数据,生成新的内容。这就
- 语言模型与向量模型:深入解析与实例剖析
♢.*
语言模型人工智能自然语言处理
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、Java与Python的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!在自然语言处理领域,语言模型和向量模型
- Cursor AI
Anjgst
人工智能
CursorAI完整指南:AI驱动的新一代编程工具目录简介主要特性安装与设置核心功能详解使用技巧价格方案常见问题简介CursorAI是一个基于VSCode的革命性AI驱动代码编辑器,它将人工智能与传统编程环境完美结合,为开发者提供更智能、更高效的编程体验。主要特性1.AI智能补全Tab智能补全:通过AI预测并补全多行代码上下文感知:理解整个项目结构和编码风格多语言支持:支持所有主流编程语言2.代码
- Python 调用常见大模型 API 全解析
♢.*
python开发语言语言模型nlp
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、JAVA、PYTHON与SAP的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!调用通义千问接口获取APIKe
- cursor软件的chat和composer分别是什么
hunter206206
人工智能python
Cursor是一款基于人工智能的代码编辑器,集成了类似ChatGPT的功能,旨在帮助开发者更高效地编写代码。以下是Cursor中Chat和Composer的具体功能:1.ChatCursor中的Chat是一个基于AI的聊天功能,类似于ChatGPT,但专门为编程场景优化。它的主要用途包括:代码解释:帮助你理解代码的功能或逻辑。代码生成:根据自然语言描述生成代码片段。代码优化:提供代码优化建议或重构
- AI编译器之——为什么大模型需要Relax?
FF-Studio
人工智能深度学习自然语言处理机器学习语言模型
放在最前:Relax的关键创新深度学习模型(比如ChatGPT这种大模型)在运行时经常遇到“输入尺寸不固定”的情况。比如你问它一个问题,这次输入是10个字,下次可能是100个字。传统编译器处理这种“变来变去”的尺寸很笨——要么只能按固定尺寸优化(导致变尺寸时性能暴跌),要么每次都要重新编译(慢到没法用)。Relax的创新:符号形状:让编译器学会“代数”Relax允许编译器用“符号变量”(比如n)表
- 【AI中数学-数理统计-综合实例-包括python实现】 揭开数据的面纱:真实样本数据的探索与可视化
云博士的AI课堂
AI中的数学人工智能python数理统计数据预处理数据探索数据可视化机器学习
第五章:数理统计-综合实例1.揭开数据的面纱:真实样本数据的探索与可视化在人工智能(AI)应用中,数据是构建算法和模型的基石,而数理统计则为我们提供了理解和处理这些数据的工具。数据探索和可视化是数理统计中至关重要的步骤,它们不仅能帮助我们理解数据的分布、关系和趋势,还能够为后续的建模工作提供依据。本节将通过五个实际案例,展示如何使用数理统计和可视化技术对真实样本数据进行探索。每个案例都包括具体的描
- Apache TVM:开源深度学习编译器栈的领跑者
计攀建Eliza
ApacheTVM:开源深度学习编译器栈的领跑者tvmOpendeeplearningcompilerstackforcpu,gpuandspecializedaccelerators项目地址:https://gitcode.com/gh_mirrors/tv/tvm项目介绍ApacheTVM是一个专为深度学习系统设计的编译器栈。它旨在弥合生产力导向的深度学习框架与性能和效率导向的硬件后端之间的差
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro