改进YOLOv5:添加EMA注意力机制

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 新建EMA.py文件
  • 修改yolo.py文件
    • 1.导入EMA.py
    • 2.修改parse_model
  • 修改yaml文件(yolov5s为例)
  • 参考


前言

本文主要介绍一种在YOLOv5-7.0中添加EMA注意力机制的方法。EMA注意力机制原论文地址,有关EMA注意力机制的解读可参考文章。

新建EMA.py文件

在yolov5的models文件中新建一个名为EMA.py文件,将下述代码复制到EMA.py文件中并保存。

import torch
from torch import nn

class EMA(nn.Module):
    def __init__(self, channels, factor=8):
        super(EMA, self).__init__()
        self.groups = factor
        assert channels // self.groups > 0
        self.softmax = nn.Softmax(-1)
        self.agp = nn.AdaptiveAvgPool2d((1, 1))
        self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
        self.pool_w = nn.AdaptiveAvgPool2d((1, None))
        self.gn = nn.GroupNorm(channels // self.groups, channels // self.groups)
        self.conv1x1 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=1, stride=1, padding=0)
        self.conv3x3 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=3, stride=1, padding=1)

    def forward(self, x):
        b, c, h, w = x.size()
        group_x = x.reshape(b * self.groups, -1, h, w)  # b*g,c//g,h,w
        x_h = self.pool_h(group_x)
        x_w = self.pool_w(group_x).permute(0, 1, 3, 2)
        hw = self.conv1x1(torch.cat([x_h, x_w], dim=2))
        x_h, x_w = torch.split(hw, [h, w], dim=2)
        x1 = self.gn(group_x * x_h.sigmoid() * x_w.permute(0, 1, 3, 2).sigmoid())
        x2 = self.conv3x3(group_x)
        x11 = self.softmax(self.agp(x1).reshape(b * self.groups, -1, 1).permute(0, 2, 1))
        x12 = x2.reshape(b * self.groups, c // self.groups, -1)  # b*g, c//g, hw
        x21 = self.softmax(self.agp(x2).reshape(b * self.groups, -1, 1).permute(0, 2, 1))
        x22 = x1.reshape(b * self.groups, c // self.groups, -1)  # b*g, c//g, hw
        weights = (torch.matmul(x11, x12) + torch.matmul(x21, x22)).reshape(b * self.groups, 1, h, w)
        return (group_x * weights.sigmoid()).reshape(b, c, h, w)

修改yolo.py文件

1.导入EMA.py

在yolo.py文件开头导入EMA.py,代码如下:

from models.EMA import EMA

代码放在yolo.py位置如下图所示:
改进YOLOv5:添加EMA注意力机制_第1张图片

2.修改parse_model

这里主要是添加通道参数,再添加一个elif,把EMA添加进去,代码如下:

 elif m is EMA:   
            args = [ch[f], *args]

添加上述代码的位置可参考下图:
改进YOLOv5:添加EMA注意力机制_第2张图片


修改yaml文件(yolov5s为例)

# YOLOv5  by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, EMA, [8]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 15], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 11], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[18, 21, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

上述代码将EMA注意力机制模块加在backbone层中最后C3模块后面,SPPF模块前面,仅供参考,具体添加位置要根据个人数据集的不同合理的添加。

[-1, 1, EMA, [8]], #-1代表连接上一层通道数,1是个数,8是EMA所需的参数(factor=8)

说明:因为在yolo.py文件parse_model函数中修改了通道参数,因此在yaml文件中无需添加通道参数,只需添加EMA函数所需的其他参数。在backbone中添加一层注意力机制模块,因此后续的层数都要加一,在head层中做如下改动。

[[-1, 15], 1, Concat, [1]],  #未改动前的第14层,在经过上述改动后改为15
[[-1, 11], 1, Concat, [1]],  #未改动前的第10层,在记过上述改动后改为11
[[18, 21, 24], 1, Detect, [nc, anchors]],  #17,20,23层改为18,21,24

运行train.py文件可以在输出终端窗口看到上图网络结构,可以看到在第9层已经成功添加EMA注意力机制模块。

                from  n    params  module                                  arguments                     
  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]              
  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                
  2                -1  1     18816  models.common.C3                        [64, 64, 1]                   
  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               
  4                -1  2    115712  models.common.C3                        [128, 128, 2]                 
  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              
  6                -1  3    625152  models.common.C3                        [256, 256, 3]                 
  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              
  8                -1  1   1182720  models.common.C3                        [512, 512, 1]                 
  9                -1  1     41216  models.EMA.EMA                          [512, 8]                      
 10                -1  1    656896  models.common.SPPF                      [512, 512, 5]                 
 11                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              
 12                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 13           [-1, 6]  1         0  models.common.Concat                    [1]                           
 14                -1  1    361984  models.common.C3                        [512, 256, 1, False]          
 15                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              
 16                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 17           [-1, 4]  1         0  models.common.Concat                    [1]                           
 18                -1  1     90880  models.common.C3                        [256, 128, 1, False]          
 19                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              
 20          [-1, 15]  1         0  models.common.Concat                    [1]                           
 21                -1  1    296448  models.common.C3                        [256, 256, 1, False]          
 22                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              
 23          [-1, 11]  1         0  models.common.Concat                    [1]                           
 24                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          
 25      [18, 21, 24]  1     16182  models.yolo.Detect                      [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
YOLOv5sEMA summary: 222 layers, 7063542 parameters, 7063542 gradients, 16.2 GFLOPs

参考

https://www.bilibili.com/video/BV1s84y1775U/?spm_id_from=333.788&vd_source=f83457e2adc10b543ae4c742fba1e3b2
https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/131347981

你可能感兴趣的:(YOLO,深度学习,神经网络)