Leetcode-76. 最小覆盖子串

目录

1.题目描述

1.1 实例一:

 2.解题思路

2.1  滑动窗口思想

2.2  面临的问题

2.3  优化

3.图示解题思路 

4.代码

5.提交运行详情


1.题目描述

给你一个字符串 S、一个字符串 T 。请你设计一种算法,可以在 O(n) 的时间复杂度内,从字符串 S 里面找出:包含 T 所有字符的最小子串。

1.1 实例一:

输入:S = "ADOBECODEBANC", T = "ABC"
输出:"BANC"

提示:

  • 如果 S 中不存这样的子串,则返回空字符串 ""
  • 如果 S 中存在这样的子串,我们保证它是唯一的答案。

 2.解题思路

2.1  滑动窗口思想

用i,j表示滑动窗口的左边界和右边界,通过改变i,j来扩展和收缩滑动窗口,可以想象成一个窗口在字符串上游走,当这个窗口包含的元素满足条件,即包含字符串T的所有元素,记录下这个滑动窗口的长度j-i+1,这些长度中的最小值就是要求的结果。

步骤一
不断增加j使滑动窗口增大,直到窗口包含了T的所有元素

步骤二
不断增加i使滑动窗口缩小,因为是要求最小字串,所以将不必要的元素排除在外,使长度减小,直到碰到一个必须包含的元素,这个时候不能再扔了,再扔就不满足条件了,记录此时滑动窗口的长度,并保存最小值

步骤三
让i再增加一个位置,这个时候滑动窗口肯定不满足条件了,那么继续从步骤一开始执行,寻找新的满足条件的滑动窗口,如此反复,直到j超出了字符串S范围。

2.2  面临的问题

如何判断滑动窗口包含了T的所有元素?
我们用一个字典need来表示当前滑动窗口中需要的各元素的数量,一开始滑动窗口为空,用T中各元素来初始化这个need,当滑动窗口扩展或者收缩的时候,去维护这个need字典,例如当滑动窗口包含某个元素,我们就让need中这个元素的数量减1,代表所需元素减少了1个;当滑动窗口移除某个元素,就让need中这个元素的数量加1。
记住一点:need始终记录着当前滑动窗口下,我们还需要的元素数量,我们在改变i,j时,需同步维护need。
值得注意的是,只要某个元素包含在滑动窗口中,我们就会在need中存储这个元素的数量,如果某个元素存储的是负数代表这个元素是多余的。比如当need等于{'A':-2,'C':1}时,表示当前滑动窗口中,我们有2个A是多余的,同时还需要1个C。这么做的目的就是为了步骤二中,排除不必要的元素,数量为负的就是不必要的元素,而数量为0表示刚刚好。
回到问题中来,那么如何判断滑动窗口包含了T的所有元素?结论就是当need中所有元素的数量都小于等于0时,表示当前滑动窗口不再需要任何元素。

2.3  优化

如果每次判断滑动窗口是否包含了T的所有元素,都去遍历need看是否所有元素数量都小于等于0,这个会耗费O(k)O(k)的时间复杂度,k代表字典长度,最坏情况下,k可能等于len(S)。
其实这个是可以避免的,我们可以维护一个额外的变量needCnt来记录所需元素的总数量,当我们碰到一个所需元素c,不仅need[c]的数量减少1,同时needCnt也要减少1,这样我们通过needCnt就可以知道是否满足条件,而无需遍历字典了。
前面也提到过,need记录了遍历到的所有元素,而只有need[c]>0大于0时,代表c就是所需元素。

3.图示解题思路 

Leetcode-76. 最小覆盖子串_第1张图片

4.代码

 

public   static  String min_Window(String s,String t)
     {
         if(s==""||s==null||t==""||t==null||s.length()0&&needs[ch]>=window[ch])
             {
                 count++;
             }
             while(count==t.length())
             {
                 ch=s.charAt(left);
                 if(needs[ch]>0&&needs[ch]>=window[ch])
             {
                 count--;
             }
                 if (right - left + 1 < minLength)
                 {
                     minLength = right - left + 1;
                     res = s.substring(left, right + 1);
                 }
                 window[ch]--;
                 left++;
             }
               right++;
         }
         return res;
     }

5.提交运行详情

 

Leetcode-76. 最小覆盖子串_第2张图片

 

你可能感兴趣的:(Leetcode算法刷题)