Tensorflow——tf.Variable()、tf.get_variable()和tf.placeholder()

tf.Variable()

  tf.Variable(initializer,name),参数initializer是初始化参数,name是可自定义的变量名称,用法如下:

import tensorflow as tf
v1=tf.Variable(tf.random_normal(shape=[4,3],mean=0,stddev=1),name='v1')
v2=tf.Variable(tf.constant(2),name='v2')
v3=tf.Variable(tf.ones([4,3]),name='v3')
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print(sess.run(v1))
    print(sess.run(v2))
    print(sess.run(v3))

结果如下:
[[-1.2115501 1.0484737 0.55210656]
[-1.5301195 0.9060654 -2.6766613 ]
[ 0.27101386 -0.32336152 0.44544214]
[-0.0120788 -0.3409422 -0.48505628]]

2

[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]

tf.get_variable()

  tf.get_variable(name, shape, initializer): name就是变量的名称,shape是变量的维度,initializer是变量初始化的方式,初始化的方式有以下几种:

tf.constant_initializer:常量初始化函数
tf.random_normal_initializer:正态分布
tf.truncated_normal_initializer:截取的正态分布
tf.random_uniform_initializer:均匀分布
tf.zeros_initializer:全部是0
tf.ones_initializer:全是1
tf.uniform_unit_scaling_initializer:满足均匀分布,但不影响输出数量级的随机值


import tensorflow as tf;  
import numpy as np;  
import matplotlib.pyplot as plt;  
  
a1 = tf.get_variable(name='a1', shape=[2,3], initializer=tf.random_normal_initializer(mean=0, stddev=1))
a2 = tf.get_variable(name='a2', shape=[1], initializer=tf.constant_initializer(1))
a3 = tf.get_variable(name='a3', shape=[2,3], initializer=tf.ones_initializer())
 
with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())
    print sess.run(a1)
    print sess.run(a2)

输出:

[[ 0.42299312 -0.25459203 -0.88605702]
[ 0.22410156 1.34326422 -0.39722782]]

[ 1.]

[[ 1. 1. 1.]
[ 1. 1. 1.]]

tf.Variable()、tf.get_variable() 两者区别

   tf.get_variable的参数列表为tf.get_variable(name, shape=None, initializer=None, dtype=tf.float32, trainable=True, collections=None),如果已存在参数定义相同的变量,就返回已存在的变量,否则创建由参数定义的新变量
  所以tf.get_variable创建变量时,会进行变量检查,当设置为共享变量时(通过scope.reuse_variables()或tf.get_variable_scope().reuse_variables()),检查到第二个拥有相同名字的变量,就返回已创建的相同的变量;如果没有设置共享变量,则会报[ValueError: Variable varx alreadly exists, disallowed.]的错误。
   而tf.Variable()创建变量时,name属性值允许重复,检查到相同名字的变量时,由自动别名机制创建不同的变量。

例如;

with tf.name_scope('name_scope_1'):
var1 = tf.get_variable(name='var1', shape=[1], initializer=None, dtype=tf.float32)
var2 = tf.Variable(name='var2', initial_value=[1], dtype=tf.float32)
var21 = tf.Variable(name='var2', initial_value=[2], dtype=tf.float32)

输出name时,如下:
var1:0
name_scope_1/var2:0
name_scope_1/var2_1:0

with tf.name_scope('name_scope_2') as scope:
scope.reuse_variables() #tf.get_variable_scope().reuse_variables()
var1 = tf.get_variable(name='var1', shape=[1], initializer=None, dtype=tf.float32)
var11 = tf.get_variable(name='var1')
var2 = tf.Variable(name='var2', initial_value=[1], dtype=tf.float32)
var21 = tf.Variable(name='var2', initial_value=[2], dtype=tf.float32)
with tf.Session() as sess:
print(var1.name)
print(var11.name)
print(var2.name)
print(var21.name)

输出name时,如下:
var1:0
var1:0
name_scope_2/var2:0
name_scope_2/var2_1:0

tf.placeholder()

tf.placeholder(dtype, shape=None, name=None)

placeholder,占位符,在tensorflow中类似于函数参数,运行时必须传入值。

  • dtype:数据类型。常用的是tf.float32,tf.float64等数值类型。
  • shape:数据形状。默认是None,就是一维值,也可以是多维,比如[2,3], [None, 3]表示列是3,行不定。
  • name:名称。
import tensorflow as tf
import numpy as np
 
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
 
output = tf.multiply(input1, input2)
 
with tf.Session() as sess:
    print sess.run(output, feed_dict = {input1:[3.], input2: [4.]})

你可能感兴趣的:(Tensorflow——tf.Variable()、tf.get_variable()和tf.placeholder())