- 遗传算法(Genetic Algorithm,GA)-基于MATLAB环境实现
朱佩棋(代码版)
启发式算法启发式算法算法matlab
1.GA简介geneticalgorithm,美国Holland教授创立,基于达尔文进化论和孟德尔的遗传学说。遗传算法类比了生物界中自然选择、交叉、变异等自然进化方式,利用数码串类比染色体,通过选择、交叉、变异等遗传算子模拟生物的进化过程。1.1遗传算法的流程1.编码伪代码:2.产生初始群体Chooseinitialpopulation3.计算适应度Evaluatethefitnessofeach
- 备战2024数学建模国赛(模型三十):遗传算法 优秀案例(三) 变循环发动机部件法建模及优化
2024年数学建模国赛
备战2024数学建模国赛2024数学建模(不代写论文请勿盲目订阅)数学建模2024年数学建模国赛备战数学建模国赛算法遗传算法2024
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- Matlab实现BP-NSGA-II多目标预测优化方法
含老司开挖掘机
本文还有配套的精品资源,点击获取简介:本文涉及将遗传算法优化的BP神经网络与NSGA-II相结合,应用于多目标预测问题的解决。主要内容包括BP神经网络的学习原理、适应度函数的设计与应用、NSGA-II在多目标优化中的作用、多目标预测的策略以及Matlab工具在算法实现中的使用。本文旨在通过这些技术,帮助读者构建出能在多个相互冲突的目标间取得平衡的优化解决方案,并提供完整的Matlab代码实现,以供
- 深度学习与遗传算法的碰撞——利用遗传算法优化深度学习网络结构(详解与实现)
2401_84003733
程序员深度学习人工智能
self.model.add(layers.Dense(10,activation=‘relu’))self.model.build(input_shape=(4,28*28))self.model.summary()self.model.compile(optimizer=optimizers.Adam(lr=0.01),loss=losses.CategoricalCrossentropy(f
- 备战2024数学建模国赛(模型十五):模糊综合评价 优秀案例(一)确定汽车装配顺序问题的算法
2024年数学建模国赛
备战2024数学建模国赛2024数学建模(持续更新耐心等待)数学建模汽车算法2024数学建模国赛备战2024数学建模国赛模糊综合评价模型
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 遗传算法,第三部分:繁殖
大龙10
书名:代码本色:用编程模拟自然系统作者:DanielShiffman译者:周晗彬ISBN:978-7-115-36947-5第9章目录9.6遗传算法,第三部分:繁殖1、繁殖现在我们已经有了选择父代的策略,下面就开始讨论繁殖下一代的方法,这一步的关键在于达尔文的遗传法则——子代能继承父代的特性。繁殖的实现方式也有很多种。无性繁殖就是一种合理(并容易实现)的策略,该策略用单个父本复制出子代个体。但遗传
- 备战2024数学建模国赛(模型十九):排队论 优秀案例(一)火车票购票网站优化
2024年数学建模国赛
备战2024数学建模国赛备战2024数学建模数学建模2024年数学建模国赛2024数学建模国赛马尔科夫模型排队论
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 备战2024数学建模国赛(模型二十五):微分方程 优秀案例(一)基于非稳态导热的高温作业专用服装设计
2024年数学建模国赛
备战2024数学建模国赛备战2024数学建模数学建模人工智能备战2024数学建模国赛深度学习数学建模国赛2024
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 备战2024数学建模国赛(模型四):动态规划优秀案例(一)基于蒙特卡洛模拟的眼科病床安排排队模型
2024年数学建模国赛
备战2024数学建模国赛备战2024数学建模数学建模动态规划算法20242024年数学建模国赛备战数学建模竞赛matlab
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 遥感之智能优化算法大纲介绍
遥感-GIS
遥感之智能优化算法图像处理arcgis启发式算法
介绍近年来在遥感及人工智能领域研究比较火热的智能优化算法,其中被广泛使用的比如粒子群算法和遗传算法等,在遥感领域,比如高光谱特征选择,机器学习超参数优化等方向有众多的应用,除了提到了两个算法之外,还有众多其他算法,本专栏基于《智能优化算法与涌现计算》及其相关资料,对智能优化算法做些详细的整理和总结,以期给遥感或其他领域提供有价值的参考。书籍大纲为:第一篇仿人智能优化算法描述模拟人脑思维、人体系统、
- 备战2024数学建模国赛(模型十八):拟合模型 优秀案例(二)高温作业服设计
2024年数学建模国赛
备战2024数学建模国赛备战2024数学建模数学建模2024年数学建模国赛数学建模国赛算法拟合模型
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 备战2024数学建模国赛(模型六):多元回归 优秀案例(一)颜色与物质浓度的辨识问题
2024年数学建模国赛
备战2024数学建模国赛备战2024数学建模数学建模多元回归2024数学建模国赛2024matlab备战数学建模国赛国赛思路代码
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 遗传算法:启发自真实现象
大龙10
书名:代码本色:用编程模拟自然系统作者:DanielShiffman译者:周晗彬ISBN:978-7-115-36947-5第9章目录9.1遗传算法:启发自真实现象1、目标我们的目标不是深入研究遗传和进化的科学原理,我们不会研究旁氏表、核苷酸、蛋白质合成、RNA和其他生物进化相关的话题。相反,我们只讨论达尔文进化论背后的核心原理,并根据这个原理开发出一套算法。我们并不在乎进化模拟是否精确,只关心进
- 手机信令数据分析&移动对象轨迹数据分析--论文摘要合集
doublexiao79
数据分析与挖掘数据分析数据挖掘智能手机
1、《基于电信位置数据的人群流量预测》卢光跃,李四维,赵宇翔,王天赐西安邮电大学学报摘要:将遗传算法和支持向量回归法结合起来,给出一种基于电信位置数据的人群流量预测方法。提取出电信位置数据中的人群流量时间序列,综合考虑其不同时间点值的关联性,用支持向量回归方法对其进行预测,并使用遗传算法对支持向量回归方法的参数进行优化。综合考虑人群流量变化的横向和纵向趋势,同时考虑使用遗传算法对SVR算法的参数进
- MATLAB智能优化算法-学习笔记(1)——遗传算法求解0-1背包问题【过程+代码】
郭十六弟
算法matlab学习智能优化算法算法思想遗传算法求解0-1背包问题
一、问题描述(1)数学模型(2)模型总结目标函数:最大化背包中的总价值Z。约束条件:确保背包中的物品总重量不超过容量W。决策变量:每个物品是否放入背包,用0或1表示。这个数学模型是一个典型的0-1整数线性规划问题。由于其NP完全性,当问题规模较大时,求解此问题通常需要使用启发式算法(如遗传算法、动态规划、分支定界法等)来找到近似最优解。(3)实例讲解:0-1背包问题模型手动求解过程在0-1背包问题
- 【LSTM回归预测】遗传算法优化注意力机制的长短时记忆神经网络GA-attention-LSTM数据回归预测【含Matlab源码 3738期】
Matlab领域
matlab
⛄一、遗传算法优化注意力机制的长短时记忆神经网络GA-attention-LSTM数据回归预测风力发电是一种清洁能源,越来越受到人们的关注和重视。然而,由于风力发电的不稳定性和不可控性,风电预测成为了一个至关重要的问题。为了更精准地预测风电发电量,许多研究者开始尝试利用深度学习技术来进行风电预测。在本文中,我们将介绍一种基于遗传优化注意力机制的长短时记忆神经网络(GA-attention-LSTM
- 遗传算法(Genetic Algorithm, GA)附代码案例
Cooku Black
机器学习python高级用法遗传算法启发式算法python
遗传算法(GeneticAlgorithm,GA)简介遗传算法(GeneticAlgorithm,GA)是一种模拟自然选择和遗传学原理的搜索算法,属于进化计算的一种。它是由约翰·霍兰德(JohnHolland)在20世纪70年代提出的,用于解决优化问题,是一种启发式算法。遗传算法的基本思想是通过模拟生物进化过程中的遗传和变异机制来优化问题的解。算法流程初始化:随机生成一组染色体(解的编码),构成初
- 智能优化算法——遗传算法(Python&Matlab实现)[2]
2401_84009974
程序员python算法matlab
初始化种群initPopulation(POP,N)进化过程==foritinrange(iter_N):#遍历每一代a,b=selection(N)#随机选择两个个体ifnp.random.random()<0.65:#以0.65的概率进行交叉结合child1,child2=crossover(POP[a],POP[b])new=sorted([POP[a],POP[b],child1,chil
- 遗传算法与深度学习实战(1)——进化深度学习
盼小辉丶
遗传算法与深度学习实战深度学习人工智能遗传算法
遗传算法与深度学习实战(1)——进化深度学习0.前言1.进化深度学习1.1进化深度学习简介1.2进化计算简介2.进化深度学习应用场景3.深度学习优化3.1优化网络体系结构4.通过自动机器学习进行优化4.1自动机器学习简介4.2AutoML工具5.进化深度学习应用5.1模型选择:权重搜索5.2模型架构:架构优化5.3超参数调整/优化5.4验证和损失函数优化5.5增强拓扑的神经进化小结系列链接0.前言
- 遗传算法与深度学习实战(6)——DEAP框架初体验
盼小辉丶
遗传算法与深度学习实战深度学习DEAP遗传算法
遗传算法与深度学习实战(6)——DEAP框架初体验0.前言1.OneMax问题介绍2.遗传算法要素定义3.使用DEAP解决OneMax问题3.1遗传算法要素配置3.2遗传算法解的进化3.3运行结果3.4eaSimple函数小结系列链接0.前言我们已经了解了DEAP库中的重要数据结构和工具,为了快速掌握DEAP,本节中,我们将介绍DEAP框架下的遗传算法构建流程,并使用DEAP解决简单的OneMax
- 遗传算法与深度学习实战(7)——使用遗传算法解决N皇后问题
盼小辉丶
遗传算法与深度学习实战深度学习DEAP遗传算法
遗传算法与深度学习实战(7)——使用遗传算法解决N皇后问题0.前言1.N皇后问题2.解的表示3.遗传算法解决N皇后问题小结系列链接0.前言进化算法(EvolutionaryAlgorithm,EA)和遗传算法(GeneticAlgorithms,GA)已成功解决了许多复杂的设计和布局问题,部分原因是它们采用了受控随机元素的搜索。这通常使得使用EA或GA设计的系统能够超越我们的理解进行创新。在本节中
- MATLAB|【免费】概率神经网络的分类预测--基于PNN的变压器故障诊断
电力程序小学童
机器预测matlab神经网络分类预测
目录主要内容部分代码结果一览下载链接主要内容《MATLAB神经网络43个案例分析》共有43章,内容涵盖常见的神经网络(BP、RBF、SOM、Hopfield、Elman、LVQ、Kohonen、GRNN、NARX等)以及相关智能算法(SVM、决策树、随机森林、极限学习机等)。同时,部分章节也涉及了常见的优化算法(遗传算法、蚁群算法等)与神经网络的结合问题。此外,《MATLAB神经网络43个案例分析
- 达尔文的自然选择
大龙10
书名:代码本色:用编程模拟自然系统作者:DanielShiffman译者:周晗彬ISBN:978-7-115-36947-5第9章目录9.3达尔文的自然选择 在研究遗传算法之前,我们要先学习达尔文进化学说中的3个基本法则。如果要正确地模拟自然选择,我们必须同时实现这3个要素。1、遗传子代必须以某种方式继承父代的特性。如果生物存活的时间足够长,繁殖的概率也足够大,那么它们的特征将会传递给下一代。2
- GA-kmedoid 遗传算法优化K-medoids聚类
2301_78492934
机器学习支持向量机人工智能matlab聚类
遗传算法优化K-medoids聚类是一种结合了遗传算法和K-medoids聚类算法的优化方法。遗传算法是一种基于自然选择和遗传机制的随机优化算法,它通过模拟生物进化过程中的遗传、交叉、变异等操作来寻找问题的最优解。而K-medoids聚类算法是一种基于划分的聚类方法,它通过选择K个数据点作为簇中心,将数据点分配到最近的簇中心,以最小化每个数据点到其所属簇中心的距离之和。K-medoids聚类算法是
- MATLAB遗传算法求解车间调度问题——模型建立和实例设计(画甘特图)
麦哥MATLAB
matlab甘特图
1.基本概念车间调度是指根据产品制造的合理需求分配加工车间顺序,从而达到合理利用产品制造资源、提高企业经济效益的目的。车间调度问题从数学上可以描述为有n个待加工的零件要在m台机器上加工。问题需要满足的条件包括每个零件的各道工序使用每台机器不多于1次,每个零件都按照一定的顺序进行加工。车间调度问题实例:现共有6个工件,在10台机器上加工,每个工件都要经过6道加工工序,每个工序可选择机器序号如表一所列
- 遗传算法解释
大吉大利都吃鸡
算法python开发语言人工智能
遗传算法是一种基于自然遗传和进化规律的人工智能算法。它通过模拟生物进化的过程,来解决各种复杂问题。遗传算法的基本流程如下:初始化:随机生成一些解作为初始种群;评估:评估每个解的适应度,根据适应度的高低决定哪些解具有更好的进化前景;交叉:选择适应度较高的两个解,并将它们的特征结合到一起形成一个新的解;变异:对新的解进行随机的突变,以增加它的多样性;替代:在每一代的结束,用新的解替换适应度较低的解。这
- Evolutionary algorithm (遗传算法)介绍
Longlongaaago
机器学习算法数据挖掘人工智能
Evolutionaryalgorithm(遗传算法)介绍Evolutionaryalgorithm遗传算法,实际上也是机器学习里面一个很重要的分支。为什么呢,因为他在之前几十年也是和深度学习一样非常火热流行。现在也有很多人在利用遗传算法做相关研究,还是比较流行的算法之一。Evolutionaryalgorithm算法是受到自然界的一些启发,通过种群优化去解决一些相关的任务,比如做数独,解决一些实
- 使用遗传算法求解一个简单的极值问题,最小化一个具有多个变量的目标函数。
依然风yrlf
算法matlab
下面是一个更详细的MATLAB示例,演示如何使用遗传算法求解一个简单的极值问题。在这个例子中,我们将尝试最小化一个具有多个变量的目标函数。%定义目标函数fitnessFunction=@(x)sum(x.^2);%Rosenbrock函数%定义遗传算法参数options=optimoptions('ga',...'MaxGenerations',100,...%最大迭代次数'PopulationS
- 遗传算法实现
qq_51497433
matlab开发语言算法
遗传算法(GeneticAlgorithm,GA)是一种模拟自然选择和遗传学原理的搜索启发式算法,它是由约翰·霍兰德(JohnHolland)在20世纪70年代提出的。遗传算法在解决优化和搜索问题时非常有效,特别是在解空间大且复杂时。该算法使用了生物进化中的选择、交叉(杂交)和变异等概念。遗传算法通常包括以下步骤:初始化:随机生成一个初始种群。种群由一定数量的个体组成,每个个体代表一个解。评估:计
- 【MATLAB】GA_BP神经网络回归预测算法
Lwcah
MATLAB回归预测算法算法matlab神经网络
有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~1基本定义GA_BP神经网络回归预测算法结合了遗传算法(GeneticAlgorithm,GA)和BP神经网络(BackpropagationNeuralNetwork,BPNN),用于解决回归预测问题。下面将详细介绍该算法的原理:BP神经网络回归模型:BP神经网络是一种前向人工神经网络,具有输入层、隐藏层和输出层。每个神经元都与下一层
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><