- 大数据面试题之Hive(1)
小的~~
大数据大数据hivehadoop
说下为什么要使用Hive?Hive的优缺点?Hive的作用是什么?说下Hive是什么?跟数据仓库区别?Hive架构Hive内部表和外部表的区别?为什么内部表的删除,就会将数据全部删除,而外部表只删除表结构?为什么用外部表更好?Hive建表语句?创建表时使用什么分隔符?Hive删除语句外部表删除的是什么?Hive数据倾斜以及解决方案Hive如果不用参数调优,在map和reduce端应该做什么Hive
- 大数据面试必备:Kafka性能优化 Producer与Consumer配置指南
Kafka面试题-在Kafka中,如何通过配置优化Producer和Consumer的性能?回答重点在Kafka中,通过优化Producer和Consumer的配置,可以显著提高性能。以下是一些关键配置项和策略:1、Producer端优化:batch.size:批处理大小。增大batch.size可以使Producer每次发送更多的消息,但要注意不能无限制增大,否则会导致内存占用过多。linger
- 58同城大数据面试题及参考答案
大模型大数据攻城狮
SparkSQLHiveSQLReduceShuffle维度建模数仓分层MAPJOIN
ROW_NUMBER、RANK、DENSE_RANK函数的区别是什么?这三个函数均为窗口函数,用于为结果集分区中的行生成序号,但核心逻辑存在显著差异,具体表现如下:数据分布与排序规则假设存在分区内分数数据为[90,85,85,80],按分数降序排序:ROW_NUMBER:为分区内每行分配唯一序号,即使值相同也不重复。上述数据的序号为1,2,3,4。RANK:相同值分配相同序号,后续序号跳过重复值的
- 希音(Shein)大数据面试题及参考答案
大模型大数据攻城狮
大数据跨境电商大数据面试数据分析AB测试数据归因数据挖掘
用SQL实现怎么找A表有B表没有的数据可以通过使用LEFTJOIN或NOTEXISTS来实现。下面是使用NOTEXISTS的写法:--查询购买商品A但没有购买商品B的用户SELECTuser_idFROMpurchasep1WHEREp1.product_id='A'ANDNOTEXISTS(SELECT1FROMpurchasep2WHEREp2.user_id=p1.user_idANDp2.
- 《Spark/Flink/Doris离线&实时数仓开发》目录
大模型大数据攻城狮
sparkflink大数据数据面试离线数仓实时数仓调度器
欢迎加入《Spark/Flink/Doris离线&实时数仓开发》付费专栏!本专栏专为大数据工程师、数据分析师及准备大数据面试的求职者量身打造,聚焦Spark、Flink、Doris等核心技术,覆盖离线与实时数仓开发的全流程。无论你是想快速上手项目、提升技术能力,还是在面试中脱颖而出,这里都能为你提供系统化、实战化、可落地的内容。为什么选择本专栏?全面覆盖,分类清晰:从数仓架构设计、ETL开发、实时
- 大数据面试必备:Kafka消息过滤原理与常见策略详解
二进制11
#Kafka面试题大数据面试kafka消息队列后端
Kafka面试题-Kafka消息过滤:原理与常见策略详解回答重点在Kafka中,消息过滤通常通过以下几种策略实现:生产者端过滤:在发送消息之前,生产者根据预定义的条件过滤消息。消费者端过滤:消费者在消费消息时,基于某种逻辑判断是否处理这条消息。KafkaStreams和KSQL:利用Kafka提供的流处理框架KafkaStreams或KSQL,实现在数据流转时对消息进行过滤。一、Kafka消息过滤
- 大数据面试必备:Kafka事务机制实现原理与消息一致性保障
二进制11
#Kafka面试题大数据面试kafka消息队列后端
Kafka面试题-Kafka的事务机制是如何实现的?它如何保证消息的一致性?回答重点Kafka的事务机制是通过一系列的协议和组件来实现的,包括事务管理器(TransactionCoordinator)、生产者(Producer)和消费者(Consumer)。核心在于事务日志(TransactionLog)和两阶段提交协议。事务机制的目标是确保一组消息的原子性,即要么全部成功,要么全部失败。事务管理
- 大数据面试必备:Kafka消费者订阅Topic机制及消费模式详解
二进制11
#Kafka面试题大数据面试kafka消息队列后端
Kafka面试题-Kafka中的Consumer是如何订阅Topic的?它的消费模式有哪些?回答重点Kafka中的Consumer订阅Topic分为两种方式:自动订阅(AutoSubscription)和手动订阅(ManualSubscription)。自动订阅:消费者使用subscribe方法,传入一个Topic列表。如果Topic列表发生变化,消费者会自动调整。手动订阅:消费者使用assign
- 大数据面试问答-数据湖
孟意昶
数据开发面试经验记录大数据面试职场和发展
1.概念数据湖(DataLake):以原始格式(如Parquet、JSON等)存储海量原始数据的存储库,支持结构化、半结构化和非结构化数据(如文本、图像)。采用Schema-on-Read模式,数据在读取时才定义结构,适合机器学习、探索性分析等场景。2.与数仓对比维度数据仓库数据湖数据存储处理后的结构化数据原始数据(结构化/半结构化/非结构化)Schema处理Schema-on-Write(写入时
- 大数据面试高阶问题:同一业务的多个部门有不同指标口径,如何统一
大模型大数据攻城狮
大数据大数据面试指标开发BI报表离线数仓指标口径统一指标
在现代企业管理中,数据驱动决策已经成为提升竞争力的核心手段。然而,当同一业务内的多个部门对关键指标的定义和计算方式存在分歧时,这种数据驱动往往会演变为混乱与低效。想象一个场景:市场部门报告的“用户增长率”基于新增注册用户数,而运营部门却以活跃用户数为基准;财务部门计算的“成本占比”包含了间接费用,产品部门却仅考虑直接成本。这样的差异看似微小,却足以在跨部门协作中引发沟通障碍,甚至导致战略决策的偏差
- 《大数据最全面试题-Offer直通车》目录
大模型大数据攻城狮
面试大数据面试职场和发展求职社会招聘校招offer
大数据时代已经到来,数据科学家、大数据工程师、数据分析师等岗位成为了热门职业。如果你正准备面试,想要脱颖而出,那么《大数据最全面试题-Offer直通车》是你的不二选择。全面大数据面试知识体系:本专栏汇集了多篇超过1万字的精华内容,总计超百万字的面试题总结。包括程序员入职新公司如何快速上手项目、大数据面试英文自我介绍参考、大数据运维应用场景面试题汇总及参考答案等。无论是数据仓库、Flink/Spar
- 大数据面试题目_综合面试_hadoop面试题_hive面试题_sqoop面试题_spark面试题_flume面试题_kafka面试题---大数据面试题007
添柴程序猿
大数据hadoophive大数据面试题flume
大数据面试:1.说一下hadoop的集群部署模式有哪几种,完全分布式如何部署以及配置?2.hadoop的守护进程有哪些?2.之前的公司,为什么要离职?3.之前公司的待遇工资多少?4.用Flink处理过什么场景的业务,是如何实现的,说一下流程?5.有没有用过NIFI?6.做的时候后端是如何做的,用的什么框架?有没有了解过springcloudTencent?7.hadoop中的代理用户功能的作用,和
- 大数据面试问答-HBase/ClickHouse
孟意昶
数据开发面试经验记录大数据面试hbase
1.HBase1.1概念HBase是构建在HadoopHDFS之上的分布式NoSQL数据库,采用列式存储模型,支持海量数据的实时读写和随机访问。适用于高吞吐、低延迟的场景,如实时日志处理、在线交易等。RowKey(行键)定义:表中每行数据的唯一标识,类似于关系数据库的主键。特点:数据按RowKey的字典序全局排序。所有查询必须基于RowKey或范围扫描(Scan)。示例:user_123_orde
- 大数据面试问答-批处理性能优化
孟意昶
大数据性能优化hadoopspark
1.数据存储角度1.1存储优化列式存储格式:使用Parquet/ORC代替CSV/JSON,减少I/O并提升压缩率。df.write.parquet("hdfs://path/output.parquet")列式存储减少I/O的核心机制:列裁剪(ColumnPruning)原理:查询时只读取需要的列,跳过无关列。示例:若执行SELECTAVG(Age)FROMusers,只需读取Age列的数据块,
- Flink+Iceberg搭建实时数据湖实战
王知无(import_bigdata)
数据库大数据hadoophivemysql
点击上方蓝色字体,选择“设为星标”回复"面试"获取更多惊喜全网最全大数据面试提升手册!第一部分:Iceberg核心功能原理剖析:ApacheIceberg摘自官网:Apache Iceberg is an open table format for huge analytic datasets.可以看到Founders对Iceberg的定位是面向海量数据分析场景的高效存储格式。海量数据分析的场景,
- 大数据面试_sql语句优化
数据小塔
大数据面试题sql大数据数据库oracle数据仓库
-------------------------------------sql语句优化-----------------------------------------------------------1、使用表别名2、sql语句尽量用大写4、oracle采用自下而上的顺序解析where子句,根据这个原理,那些可以滤掉最大数量记录的条件必须写在where子句的末尾select*fromempw
- 大数据面试题整理——Hive
自节码
大数据面试题整理hive大数据数据仓库
系列文章目录大数据面试题专栏点击进入文章目录系列文章目录Hive面试知识点全面解析一、函数相关(一)函数分类与特点(二)`concat`和`concat_ws`的区别二、SQL的书写和执行顺序(一)书写顺序(二)执行顺序三、where和having的区别(一)筛选时机(二)示例四、表连接的方式及区别(一)连接方式(二)区别示例五、Hive的排序方式及区别(一)排序方式(二)区别六、Hive的体系架
- 大数据面试必备:Kafka的Topic是什么?它的作用是什么?
二进制11
#Kafka面试题大数据面试kafka
Kafka面试题-Kafka的Topic是什么?它的作用是什么?回答重点Kafka的Topic是Kafka消息系统中的一个逻辑概念,简单说来,它是用来区分和隔离不同类型消息的单位。每一个Topic都有一个名称,生产者将消息发送到某个特定的Topic上,而消费者从某个特定的Topic接收消息。其作用主要包括以下几点:消息分类:Kafka通过Topic来对消息进行分类管理,生产者和消费者通过Topic
- 六月份阶段性大总结之Doris/Clickhouse/Hudi一网打尽
王知无(import_bigdata)
大数据编程语言人工智能java数据分析
点击上方蓝色字体,选择“设为星标”回复"面试"获取更多惊喜全网最全大数据面试提升手册!这是个阶段性小总结,后面会持续更新。ClickHouse「Clickhouse系列」分布式表&本地表详解「ClickHouse系列」ClickHouse之MergeTree原理「ClickHouse系列」Replication机制详解「ClickHouse系列」ClickHouseSQL基本语法和导入导出实战「C
- 数据分析大数据面试题大杂烩01
爱学习的菜鸟罢了
大数据flink大数据面试hivehadoopkafka
互联网:通过埋点实时计算用户浏览频次用优惠券等措施吸引用户,通过历史信息用非智能学习的title方式构造用户画像(抖音,京东)电信,银行统计营收和针对用户的个人画像:处理大量非实时数据政府:健康码,扫码之后确诊,找出与确诊对象有关联的人订单订单表(除商品以外所有信息),商品详情表,通过搜集用户title进行定制化推荐点击流数据通过埋点进行用户点击行为分析FLINK一般用来做实时SPARK一般用来做
- 大数据面试之路 (三) mysql
愿与狸花过一生
大数据面试职场和发展
技术选型通常也是被问道的问题,一方面考察候选人对技术掌握程度,另一方面考察对项目的理解,以及项目总结能力。介绍项目是从数据链路介绍,是一个很好来的方式,会让人觉得思路清晰,项目理解透彻。将SparkSQL加工后的数据存入MySQL通常基于以下几个关键原因:1.数据应用场景适配OLTP与OLAP分工:SparkSQL擅长处理大数据量的OLAP(分析型)任务,而MySQL作为OLTP(事务型)数据库,
- 大数据面试之路 (二) hive小文件合并优化方法
愿与狸花过一生
大数据大数据hivehadoop
大量小文件容易在文件存储端造成瓶颈,影响处理效率。对此,您可以通过合并Map和Reduce的结果文件来处理。一、合并小文件的常见场景写入时产生小文件:Reduce任务过多或数据量过小,导致每个任务输出一个小文件。动态分区插入:分区字段基数高,每个分区生成少量数据,形成大量小文件。频繁追加数据:通过INSERTINTO多次追加数据,导致文件碎片化。二、合并小文件的核心方法方法1:调整Reduce任务
- 大数据面试之路 (一) 数据倾斜
愿与狸花过一生
大数据面试职场和发展
记录大数据面试历程数据倾斜大数据岗位,数据倾斜面试必问的一个问题。一、数据倾斜的表现与原因表现某个或某几个Task执行时间过长,其他Task快速完成。Spark/MapReduce作业卡在某个阶段(如reduce阶段),日志显示少数Task处理大量数据。资源利用率不均衡(如CPU、内存集中在某些节点)。常见场景Key分布不均:如某些Key对应的数据量极大(如用户ID为空的记录、热点事件)。数据分区
- 大数据面试系列之——Hadoop
潜心_守道
大数据面经面试大数据Hadoop
Hadoop的三个核心:HDFS(分布式存储系统)MapReduce(分布式计算系统)YARN(分布式资源调度)1.Hadoop集群的几种搭建模式1.单机模式:直接解压安装,不存在分布式存储系统2.伪分布式:NameNode和DataNode安装于同一个节点,无法体现分布式处理的优势。3.完全分布式:一个主节点,多个从节点,存在如果主节点宕机,集群就无法使用的缺点。4.高可用模式:多个主节点,多个
- 大数据面试临阵磨枪不知看什么?看这份心理就有底了-大数据常用技术栈常见面试100道题
大模型大数据攻城狮
大数据面试职场和发展面试题数据仓库算法
目录1描述Hadoop的架构和它的主要组件。2MapReduce的工作原理是什么?3什么是YARN,它在Hadoop中扮演什么角色?4Spark和HadoopMapReduce的区别是什么?5如何在Spark中实现数据的持久化?6SparkStreaming的工作原理是什么?7如何优化Spark作业的性能?8描述HBase的架构和它的主要组件。9HBase的读写流程是怎样的?10HBase如何处理
- 360大数据面试题及参考答案
大模型大数据攻城狮
大数据数据治理jvm内存CAS数据开发指标开发数据分析
数据清理有哪些方法?数据清理是指发现并纠正数据文件中可识别的错误,包括检查数据一致性,处理无效值和缺失值等。常见的数据清理方法有以下几种:去重处理:数据中可能存在重复的记录,这不仅会占用存储空间,还可能影响分析结果。通过对比每条记录的关键属性,若所有关键属性值都相同,则判定为重复记录,可保留其中一条,删除其余重复项。例如在客户信息表中,若有两条记录客户姓名、联系方式、地址等关键信息都一样,就可进行
- 大数据面试刷题
陈吉俊
学习方法
de的题目解析和讨论区也非常活跃,可以帮助求职者更好地理解题目和解题思路。牛客网(牛客网-找工作神器|笔试题库|面试经验|实习招聘内推,求职就业一站解决_牛客网):牛客网是国内内容超级丰富的IT题库,不仅提供了大量的面试题,还涵盖了笔试题库、面试经验分享、实习招聘内推等多个方面。对于大数据方向的求职者来说,牛客网是一个一站式的学习平台,可以帮助他们系统地提升面试竞争力。超级码客(www.chaoj
- 大数据面试题:说下为什么要使用Hive?Hive的优缺点?Hive的作用是什么?
蓦然_
大数据面试题hive大数据开发面试题大数据面试
1、为什么要使用Hive?Hive是Hadoop生态系统中比不可少的一个工具,它提供了一种SQL(结构化查询语言)方言,可以查询存储在Hadoop分布式文件系统(HDFS)中的数据或其他和Hadoop集成的文件系统,如MapR-FS、Amazon的S3和像HBase(Hadoop数据仓库)和Cassandra这样的数据库中的数据。大多数数据仓库应用程序都是使用关系数据库进行实现的,并使用SQL作为
- 大数据面试-Scala
文文鑫
#大数据面试-Scala大数据scala开发语言
谈谈scala的闭包、柯里化、高阶函数如果一个函数,访问到了它的外部(局部)变量的值,那么这个函数和他所处的环境,称为闭包。闭包在函数式编程中是一个重要的概念,广泛用于高阶函数、柯里化等技术中。函数柯里化:把一个参数列表的多个参数,变成多个参数列表;函数柯里化,其实就是将复杂的参数逻辑变得简单化,函数柯里化一定存在闭包。高阶函数:1)函数可以作为值进行传递2)函数可以作为参数进行传递3)函数可以作
- 大数据面试-Zookeeper
文文鑫
#大数据面试-Zookeeper大数据面试zookeeper
你对Zookeeper的选举机制了解吗?为什么zk节点个数推荐奇数台?zk第一次启动的选举的细节了解吗?ZooKeeper的选举机制是基于Paxos算法的一种分布式选举算法,用于在ZooKeeper集群中选择一个节点作为Leader,负责处理客户端的写请求和协调其他节点。选举过程涉及多个方面,包括选举算法的实现细节、奇数节点的重要性,以及初始化时的选举过程。选举算法的实现细节:在ZooKe
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文