注:本文仅供学习,未经同意请勿转载
说明:该博客来源于xiaobai_Ry:2020年3月笔记
对应的PDF下载链接在:待上传
目录
目标检测常见数据集总结
V0C数据集(Annotation的格式是xmI)
A. 数据集包含种类:
B. V0C2007和V0C2012的区别:
C. 数据集格式:
D. 标注信息是用xmI文件组织的如下:
E. 各文件部分展示
COCO数据集(Annotation的格式是json)
这里先总结一下,我自己看完这三个常见目标检测数据集:
一共包含了20类。一共包含了20类。Person,bird, cat, cow, dog, horse, sheep,aeroplane, bicycle, boat, bus, car, motorbike, train, bottle, chair, dining table, potted plant, sofa, tv/monitor.
(图片来源于某博客,忘记是哪个博客了,如果博友知道,方便告诉,我补上链接)
VOC2007中包含9963张标注过的图片, 由train/val/test三部分组成, 共标注出24,640个物体。
对于检测任务,VOC2012的trainval/test包含08-11年的所有对应图片。 trainval有11540张图片共27450个物体。
. ├── Annotations 【Annotations下存放的是xml文件,每个xml对应JPEGImage中的一张图片描述
| 了图片信息】
├── ImageSets【包含三个子文件夹 Layout、Main、Segmentation】
│ ├── Action【Action下存放的是人的动作(例如running、jumping等等)】
│ ├── Layout 【Layout下存放的是具有人体部位的数据】
│ ├── Main 【Main下存放的是图像物体识别的数据,总共分为20类。】
│ └── Segmentation 【Segmentation下存放的是可用于分割的数据】
├── JPEGImages 【主要提供的是PASCAL VOC所提供的所有的图片信息,包括训练图片,测
试图片
| | |
这些图像就是用来进行训练和测试验证的图像数据。注:是没有标记时的 原图】 |
├── SegmentationClass 【存放按照 class 分割的图片;目标检测不需要】
└── SegmentationObject【存放按照 object 分割的图片;目标检测不需要】
VOC2007
000001.jpg # 文件名
Fried Camels
Jinky the Fruit Bat
# 图像尺寸, 用于对 bbox 左上和右下坐标点做归一化操作
353
500
3
0 # 是否用于分割
(1)JPEGImages:
(2)Annotations
图像来源链接:点击此处
80类
3种标注类型,使用json文件存储,每种类型包含了训练和验证
object instances(目标实例): 也就是目标检测object detection;object keypoints(目标上的关键点); image captions(看图说话)
{
"info": info,
"licenses": [license],
"images": [image],
"annotations": [annotation],
}
info{
"year": int,
"version": str,
"description": str,
"contributor": str,
"url": str,
"date_created": datetime,
}
license{
"id": int,
"name": str,
"url": str,
}
image{
"id": int,
"width": int,
"height": int,
"file_name": str,
"license": int,
"flickr_url": str,
"coco_url": str,
"date_captured": datetime,
}
和VOC相比,coco数据集,小目标多、单幅图片目标多、物体大多非中心分布、更符合日常环境,所以coco检测难度更大。
会直接把每张图片标注的标签信息保存到一个txt文件中
0 0.521000 0.235075 0.362000 0.450249
0 0.213000 0.645522 0.418000 0.519900
0 0.794000 0.665423 0.376000 0.470149
注:keras版yolov3训练格式是name box class这种形式
参考的博客:
把LabelImg标注的YOLO格式标签转化为VOC格式标签_吾爱北方的母老虎-CSDN博客_voc计算公式
把LabelImg标注的YOLO格式标签转化为VOC格式标签 和 把VOC格式标签转化为YOLO格式标签_点亮~黑夜的博客-CSDN博客
参考的博客:
a. 推荐博客1:
VOC、COCO、YOLOv3 的 .json .xml .txt 标签文件内容,格式转换_轮子去哪儿了-CSDN博客_去voc
VOC、COCO、YOLOv3 的 .json .xml .txt 标签文件内容,格式转换_轮子去哪儿了的博客-CSDN博客_json转xml yolov3
b. 推荐博客2:
yolo格式、voc格式、coco格式相互转换(xml,json,txt)_qq_38109843的博客-CSDN博客_yolo格式
yolo格式、voc格式、coco格式相互转换(xml,json,txt)_三寸光阴___的博客-CSDN博客
额外:
python 下json转xml、html,xml转json_weixin_42081389的博客-CSDN博客_python html转json
python 下json转xml、html,xml转json_zhaojiafu666的博客-CSDN博客