[2018HN省队集训D1T1] Tree

[2018HN省队集训D1T1] Tree

题意

给定一棵带点权树, 要求支持下面三种操作:

  • 1 rootroot 设为根.
  • 2 u v d 将以 \(\operatorname{LCA} (u,v)\) 为根的子树中的点权值加上 \(d\).
  • 3 u 查询以 \(u\) 为根的子树中的点的权值之和.

初始时根为 \(1\).

\(n,q\le3\times 10^5\)

时限 \(1\texttt{s}\).

题解

垃圾卡常题毁我青春

写这个题解主要是存板子的...毕竟LCT上比较科学优雅地实现LCA需要改板子...但是我的LCT长得比较滑稽没几个人写得和我一样

考场上主要思路是当成把换根子树修改和换根LCA分开算, 子树修改可以对DFS序建线段树解决. 具体做法是分类讨论新根 \(p\) /原来的根 \(r\) /要修改的子树的根 \(u\) 三个点的位置关系. 若 \(u\) 不在 \(p\)\(r\) 的路径上, 那么直接修改 \(u\) 在以 \(r\) 为根的子树即可. 否则设 \(u\rightarrow v \leadsto r\), 那么除了 \(v\) 的子树之外的所有点都要修改, 分两段解决或者先整体加再子树减也可以.

换根LCA是LCT的标准操作. 比较科学地求LCA需要在 Access 的时候返回最后一次连接的虚边的父亲侧结点, 就可以两次 Access 求出LCA了.

考场上打完没过样例发现Access的时候把虚子树连到Splay左儿子去了囧...

然后这题数据丧病地出到了 3e5 所以需要常数优化一下比如加个快读3e5的读入量还不加快读显然是自己作死吧

参考代码

#include 

const int MAXE=1e6+10;
const int MAXV=3e5+10;
typedef long long intEx;

struct Edge{
    int from;
    int to;
    Edge* next;
};
Edge E[MAXE];
Edge* head[MAXV];
Edge* top=E;

struct LCT{
#define lch chd[0]
#define rch chd[1]
#define kch chd[k]
#define xch chd[k^1]
    struct Node{
        int id;
        bool rev;
        Node* prt;
        Node* pprt;
        Node* chd[2];
        Node(int id):id(id),rev(false),prt(NULL),pprt(NULL),chd{NULL,NULL}{}
        inline void Flip(){
            if(this!=NULL){
                this->rev=!this->rev;
                std::swap(this->lch,this->rch);
            }
        }
        inline void PushDown(){
            if(this!=NULL&&this->rev){
                this->lch->Flip();
                this->rch->Flip();
                this->rev=false;
            }
        }
    };
    std::vector N;
    LCT(int n):N(n+1){
        for(int i=1;i<=n;i++)
            N[i]=new Node(i);
    }
    inline void Rotate(Node* root,int k){
        Node* tmp=root->xch;
        root->PushDown();
        tmp->PushDown();
        tmp->prt=root->prt;
        if(root->prt==NULL){
            tmp->pprt=root->pprt;
            root->pprt=NULL;
        }
        else if(root->prt->lch==root)
            root->prt->lch=tmp;
        else
            root->prt->rch=tmp;
        root->xch=tmp->kch;
        if(root->xch!=NULL)
            root->xch->prt=root;
        tmp->kch=root;
        root->prt=tmp;
    }
    inline void Splay(Node* root){
        while(root->prt!=NULL){
            int k=root->prt->lch==root;
            if(root->prt->prt==NULL)
                Rotate(root->prt,k);
            else{
                int d=root->prt->prt->lch==root->prt;
                Rotate(k==d?root->prt->prt:root->prt,k);
                Rotate(root->prt,d);
            }
        }
    }
    inline void Expose(Node* root){
        Splay(root);
        root->PushDown();
        if(root->rch!=NULL){
            root->rch->prt=NULL;
            root->rch->pprt=root;
            root->rch=NULL;
        }
    }
    inline  Node* Access(Node* root){
        Expose(root);
        Node* ret=root;
        while(root->pprt!=NULL){
            ret=root->pprt;
            Expose(root->pprt);
            root->pprt->rch=root;
            root->prt=root->pprt;
            root->pprt=NULL;
            Splay(root);
        }
        return ret;
    }
    inline  void Evert(Node* root){
        Access(root);
        Splay(root);
        root->Flip();
    }
    inline  void Evert(int root){
        Evert(N[root]);
    }
    inline  void Link(int prt,int son){
        Evert(N[son]);
        N[son]->pprt=N[prt];
    }
    inline  int LCA(int x,int y){
        Access(N[x]);
        return Access(N[y])->id;
    }
#undef lch
#undef rch
#undef kch
#undef xch
};

struct Node{
    int l;
    int r;
    intEx add;
    intEx sum;
    Node* lch;
    Node* rch;
    Node(int,int);
    void Maintain();
    void PushDown();
    intEx Query(int,int);
    void Add(const intEx&);
    void Add(int,int,const intEx&);
};

int n;
int q;
int clk;
int val[MAXV];
int pos[MAXV];
int dfn[MAXV];
int deep[MAXV];
int size[MAXV];
int prt[20][MAXV];

void ReadInt(int&);
void Insert(int,int);
int Ancestor(int,int);
void DFS(int,int,int);

int main(){
    ReadInt(n);
    ReadInt(q);
    for(int i=1;i<=n;i++)
        ReadInt(val[i]);
    LCT* T=new LCT(n);
    for(int i=1;iLink(a,b);
    }
    DFS(1,0,0);
    for(int i=1;(1<Evert(1);
    int root=1;
    for(int i=0;iEvert(root);
        }
        else if(t==2){
            int a,b,d;
            ReadInt(a);
            ReadInt(b);
            ReadInt(d);
            int lca=T->LCA(a,b);
            if(lca==root)
                N->Add(1,n,d);
            else if(deep[lca]>=deep[root])
                N->Add(dfn[lca],dfn[lca]+size[lca]-1,d);
            else if(Ancestor(root,deep[root]-deep[lca])==lca){
                int x=Ancestor(root,deep[root]-deep[lca]-1);
                N->Add(1,n,d);
                N->Add(dfn[x],dfn[x]+size[x]-1,-d);
            }
            else
                N->Add(dfn[lca],dfn[lca]+size[lca]-1,d);
        }
        else if(t==3){
            int r;
            ReadInt(r);
            intEx ans=0;
            if(r==root)
                ans=N->Query(1,n);
            else if(deep[r]>=deep[root])
                ans=N->Query(dfn[r],dfn[r]+size[r]-1);
            else if(Ancestor(root,deep[root]-deep[r])==r){
                int x=Ancestor(root,deep[root]-deep[r]-1);
                ans+=N->Query(1,n);
                ans-=N->Query(dfn[x],dfn[x]+size[x]-1);
            }
            else
                ans=N->Query(dfn[r],dfn[r]+size[r]-1);
            printf("%lld\n",ans);
        }
    }
    return 0;
}

inline int Ancestor(int cur,int k){
    for(int i=0;(1<next){
        if(i->to!=prt){
            DFS(i->to,root,deep+1);
            size[root]+=size[i->to];
        }
    }
}

inline void Insert(int from,int to){
    top->from=from;
    top->to=to;
    top->next=head[from];
    head[from]=top++;
}

Node::Node(int l,int r):l(l),r(r),add(0),lch(NULL),rch(NULL){
    if(l==r)
        sum=val[pos[l]];
    else{
        int mid=(l+r)>>1;
        this->lch=new Node(l,mid);
        this->rch=new Node(mid+1,r);
        this->sum=this->lch->sum+this->rch->sum;
    }
}

void Node::Add(int l,int r,const intEx& d){
    if(l<=this->l&&this->r<=r)
        this->Add(d);
    else{
        this->PushDown();
        if(l<=this->lch->r)
            this->lch->Add(l,r,d);
        if(this->rch->l<=r)
            this->rch->Add(l,r,d);
        this->Maintain();
    }
}

intEx Node::Query(int l,int r){
    if(l<=this->l&&this->r<=r)
        return this->sum;
    else{
        this->PushDown();
        if(r<=this->lch->r)
            return this->lch->Query(l,r);
        if(this->rch->l<=l)
            return this->rch->Query(l,r);
        return this->lch->Query(l,r)+this->rch->Query(l,r);
    }
}

void Node::Maintain(){
    this->sum=this->lch->sum+this->rch->sum;
}

void Node::PushDown(){
    if(this->add){
        this->lch->Add(this->add);
        this->rch->Add(this->add);
        this->add=0;
    }
}

inline void Node::Add(const intEx& d){
    this->add+=d;
    this->sum+=d*(r-l+1);
}

inline void ReadInt(int& target){
    target=0;
    int sgn=1;
    register char ch=getchar();
    while(!isdigit(ch)){
        if(ch=='-')
            sgn=-sgn;
        ch=getchar();
    }
    while(isdigit(ch)){
        target=target*10+ch-'0';
        ch=getchar();
    }
    target*=sgn;
}

[2018HN省队集训D1T1] Tree_第1张图片

转载于:https://www.cnblogs.com/rvalue/p/10450895.html

你可能感兴趣的:(数据结构与算法)