- 基于VGG的猫狗识别
卑微小鹿
tensorflowtensorflow
由于猫和狗的数据在这里,所以就做了一下分类的神经网络1、首先进行图像处理:importcsvimportglobimportosimportrandomos.environ['TF_CPP_MIN_LOG_LEVEL']='2'importtensorflowastffromtensorflowimportkerasfromtensorflow.kerasimportlayersimportnum
- 基于示例详细讲解模型PTQ量化的步骤(含代码)
LQS2020
卷积神经网络python
详细探讨模型PTQ量化每个步骤,涉及更多的技术细节和实际计算方法,以便更好地理解PTQ(Post-TrainingQuantization,训练后量化)的全过程。1.模型训练我们假设已经训练了一个卷积神经网络(CNN),例如VGG-16。训练完成后,我们得到了一个以32位浮点数表示的模型权重和激活值。2.收集统计信息在量化之前,我们需要从模型中收集统计信息,以帮助确定量化的参数。收集权重和激活的统
- 打印出ckpt里的所有变量和值
yalesaleng
参考:http://blog.csdn.net/helei001/article/details/56489658fromtensorflow.pythonimportpywrap_tensorflowimportosimportnumpyasnpimporttensorlayerastl#print出ckpt里的所有变量model_dir='./logs_vgg16/case_64'checkp
- VGG16滤镜可视化和类激活图
LIjin_1006
人工智能神经网络深度学习cnn
这个用keras2.2.4+tensorflow1.15.0importkeraskeras.__version__fromkeras.applicationsimportVGG16fromkerasimportbackendasKimportnumpyasnpfromkerasimportmodelsimportmatplotlib.pyplotaspltimporttensorflowastf
- 大疆的raw图噪声合成:Towards General Low-Light Raw Noise Synthesis and Modeling
tony365
降噪pytorch计算机视觉人工智能
文章目录TowardsGeneralLow-LightRawNoiseSynthesisandModeling1dd2信号相关噪声建模3信号无关噪声:生成器和一致性损失(L1和vgg内容损失)4判别器5总结TowardsGeneralLow-LightRawNoiseSynthesisandModeling1dd作者说极暗场景下物理方法仿真不好。作者提出的方法,对于信号相关的噪声使用物理方法建模,
- 计算机设计大赛 深度学习图像风格迁移
iuerfee
python
文章目录0前言1VGG网络2风格迁移3内容损失4风格损失5主代码实现6迁移模型实现7效果展示8最后0前言优质竞赛项目系列,今天要分享的是深度学习图像风格迁移-opencvpython该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分享:https://gitee.com/dancheng-senior
- Unet 高阶分割网络实战、多类别分割、迁移学习(deeplab、resnet101等等)
听风吹等浪起
图像分割计算机视觉人工智能
1、前言Unet图像分割之前介绍了不少,具体可以参考图像分割专栏为了实现多类别的自适应分割,前段时间利用numpy的unique函数实现了一个项目。通过numpy函数将mask的灰度值提取出来,保存在txt文本里,这样txt里面就会有类似012...等等的灰度值。而有几个灰度值,就代表分割要分出几个类别。具体可以参考:Unet实战分割项目、多尺度训练、多类别分割将vgg换成resnet的unet参
- 【深度学习】使用tensorflow实现VGG19网络
杨得江-君临天下wyj
网络协议网络
【深度学习】使用tensorflow实现VGG19网络本文章向大家介绍【深度学习】使用tensorflow实现VGG19网络,主要内容包括其使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。VGG网络与AlexNet类似,也是一种CNN,VGG在2014年的ILSVRClocalizationandclassification两个问题上分别取得了第一名和
- vgg19-dcbb9e9d.pth文件网盘下载
Sherry_Yue
pytorchVGG
VGG19pth文件网盘链接官网下载地址(特别慢):https://download.pytorch.org/models/vgg19-dcbb9e9d.pth网盘下载地址:链接:https://pan.baidu.com/s/1Z0H1E9vv3aL5u4BHUw5LdA提取码:bwma
- DFM-无监督图像匹配
alex1801
深度学习图像配准匹配图像拼接
DFM:APerformanceBaselineforDeepFeatureMatching(深度特征匹配的性能基准)2021.06.14摘要提出了一种新的图像匹配方法,利用现成的深度神经网络提取的学习特征来获得良好的图像匹配效果。该方法使用预训练的VGG结构作为特征提取器,不需要任何额外的训练来提高匹配。灵感来自心理学领域成熟的概念,如心理旋转,初始扭曲是作为初步几何变换估计的结果而执行的(an
- VGG19模型训练+读取
影醉阏轩窗
VGG-19的介绍和训练这里不做说明,网上资源很多,而且相对比较简单.本博文主要介绍VGG-19模型调用官方已经训练好的模型,进行测试使用.[TOC]VGG-19模型简单介绍VGG模型使用VGG结构模型VGG具体参数模型VGG-19模型文件介绍这里是重难点,VGG-19模型存储的方式有点复杂可以通过作者文档说明去查看可以通过在线调试查看结构,对比模型得出结论imagenet-vgg-verydee
- 深度学习之迁移学习实现神奇宝贝识别
starlet_kiss
机器学习深度学习人工智能迁移学习
经过之前深度学习的实践,无论是自己搭建的CNN网络也好,还是通过迁移学习调用官方的网络模型也好,都有其优点以及不足。本次实验通过对各种常用的CNN网络模型进行调用,了解一下它们的特点,对比一下在对于同一数据集进行分类时的准确率。本次所调用的CNN模型有:VGG16VGG19ResNetDensenet模型1.导入库importtensorflowastfimportnumpyasnpimportm
- Unet 实战分割项目、多尺度训练、多类别分割
听风吹等浪起
图像分割深度学习人工智能机器学习
1.介绍之前写了篇二值图像分割的项目,支持多尺度训练,网络采用backbone为vgg的unet网络。缺点就是没法实现多类别的分割,具体可以参考:二值图像分割统一项目本章只对增加的代码进行介绍,其余的参考上述链接博文本章实现的unet网络的多类别分割,也就是分割可以是两个类别,也可以是多个类别。训练过程仍然采用多尺度训练,即网络会随机将图片缩放到设定尺寸的0.5-1.5倍之间文件目录如下:2.实现
- Unet+ResNet 实战分割项目、多尺度训练、多类别分割
听风吹等浪起
图像分割人工智能计算机视觉
1.介绍传统的Unet网络,特征提取的backbone采用的是vgg模型,vgg的相关介绍和实战参考以前的博文:pytorch搭建VGG网络VGG的特征提取能力其实是不弱的,但网络较为臃肿,容易产生梯度消失或者梯度爆炸的问题。而Resnet可以解决这一问题,参考:ResNet训练CIFAR10数据集,并做图片分类本章在之前文章的基础上,只是将Unet的backbone进行替换,将vgg换成了res
- 深度学习(15)--PyTorch构建卷积神经网络
GodFishhh
深度学习深度学习人工智能
目录一.PyTorch构建卷积神经网络(CNN)详细流程二.graphviz+torchviz使PyTorch网络可视化2.1.可视化经典网络vgg162.2.可视化自己定义的网络一.PyTorch构建卷积神经网络(CNN)详细流程卷积神经网络(ConvolutionalNeuralNetworks)是一种深度学习模型或类似于人工神经网络的多层感知器,常用来分析视觉图像。卷积神经网络的详细介绍可以
- 挑战杯 python+深度学习+opencv实现植物识别算法系统
laafeer
python
0前言优质竞赛项目系列,今天要分享的是基于深度学习的植物识别算法研究与实现学长这里给一个题目综合评分(每项满分5分)难度系数:4分工作量:4分创新点:4分更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate2相关技术2.1VGG-Net模型GoogleDeepMind公司研究员与牛津大学计算机视觉组在2014年共同研发出了一种全新的卷积神
- 【转载】详解残差网络
yepeng2007fei
深度学习
转载自https://zhuanlan.zhihu.com/p/42706477在VGG中,卷积网络达到了19层,在GoogLeNet中,网络史无前例的达到了22层。那么,网络的精度会随着网络的层数增多而增多吗?在深度学习中,网络层数增多一般会伴着下面几个问题计算资源的消耗模型容易过拟合梯度消失/梯度爆炸问题的产生问题1可以通过GPU集群来解决,对于一个企业资源并不是很大的问题;问题2的过拟合通过
- 深度学习的进展
李建军
软件使用深度学习人工智能
深度学习近年来的进展在各个领域均展现出非凡的实力,以下将进一步详述几个关键领域的具体突破和应用:1.计算机视觉图像分类与识别:随着深度卷积神经网络的发展,如AlexNet、VGG、Inception系列、ResNet以及DenseNet等模型,图像分类准确率显著提高。尤其是ImageNet大规模视觉识别挑战赛上,错误率逐年降低,现在已经接近人类水平。目标检测:RCNN系列(FastRCNN、Fas
- 常见分类网络的结构
hzhj
计算机视觉
VGG16图片来自这里MobilenetV3small和large版本参数,图片来着这里Resnet图片来自这里
- 看懂paper中的卷积堆叠感受野计算
霍尔元件
VGG中卷积堆叠在赢得其中一届ImageNet比赛里VGG网络的文章中,他最大的贡献并不是VGG网络本身,而是他对于卷积叠加的一个巧妙观察。This(stackofthree3×3convlayers)canbeseenasimposingaregularisationonthe7×7conv.filters,forcingthemtohaveadecompositionthroughthe3×3
- 计算机设计大赛 深度学习 植物识别算法系统
iuerfee
python
文章目录0前言2相关技术2.1VGG-Net模型2.2VGG-Net在植物识别的优势(1)卷积核,池化核大小固定(2)特征提取更全面(3)网络训练误差收敛速度较快3VGG-Net的搭建3.1Tornado简介(1)优势(2)关键代码4InceptionV3神经网络4.1网络结构5开始训练5.1数据集5.2关键代码5.3模型预测6效果展示6.1主页面展示6.2图片预测6.3三维模型可视化7最后0前言
- VGG16
yanghedada
importtensorflowastfimportnumpyasnpfromscipy.miscimportimread,imresizefromimagenet_classesimportclass_namesclassvgg16:def__init__(self,imgs,weights=None,sess=None):self.imgs=imgsself.convlayers()self.
- 2024.2.4周报
Nyctophiliaa
人工智能深度学习
目录摘要一、文献阅读1、题目2、摘要3、模型架构4、文献解读一、Introduction二、实验三、结论二、PINN一、PINN比传统数值方法有哪些优势二、PINN方法三、正问题与反问题总结摘要本周我阅读了一篇题目为DeepResidualLearningforImageRecognition的文献,文章的贡献是作者提出了残差网络的思想,且证明了更深层的残差网络具有比VGG网络更低的复杂度和更高的
- (CVPR-2021)RepVGG:让 VGG 风格的 ConvNet 再次伟大
顾道长生'
基础架构计算机视觉深度学习
RepVGG:让VGG风格的ConvNet再次伟大Title:RepVGG:MakingVGG-styleConvNetsGreatAgainpaper是清华发表在CVPR2021的工作paper链接Abstract我们提出了一种简单但功能强大的卷积神经网络架构,它具有类似VGG的推理时间主体,仅由3×33\times33×3卷积和ReLU堆栈组成,而训练时间模型具有多分支拓扑。这种训练时间和推理
- 大创项目推荐 题目:基于深度学习的图像风格迁移 - [ 卷积神经网络 机器视觉 ]
laafeer
python
文章目录0简介1VGG网络2风格迁移3内容损失4风格损失5主代码实现6迁移模型实现7效果展示8最后0简介优质竞赛项目系列,今天要分享的是基于深度学习卷积神经网络的花卉识别该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate图片风格迁移指的是将一个图片的风格转换到另一个图片中,如图所示:原
- 基于VGG-16的检测并清除杂草
想了半天也不知道取什么名字
人工智能
目录1简介:检测并清除杂草1.1问题描述:1.2预期解决方案:1.3数据集:1.4图像展示:2数据预处理2.1数据集结构2.2部分数据分析2.3提取数据集2.4数据增强2.5构建数据集3使用VGG-16识别杂草图片3.1经典CNN3.3VGG-163.4修改后的VGG-16网络结构4在GPU上进行训练4.1参数设置4.2训练模型4.3查看训练时间及F1分数4.4保存模型并进行测试5将模型移植到CP
- 【Week-P6】VGG16-好莱坞明星识别
m_Molly
深度学习
文章目录一、环境配置二、准备数据三、搭建网络结构四、开始训练五、查看训练结果六、修改部分参数,提高test_accuracy6.1修改为每2个epoch学习率衰减一次,得到test_accuracy=24.7%6.1修改三个地方,得到test_accuracy=23.9%本文为365天深度学习训练营中的学习记录博客原作者:K同学啊|接辅导、项目定制说明:(1)本次学习使用VGG-16模型完成,调用
- 【20240123】唠一下
m_Molly
杂记深度学习
文章目录**Q:在资源有限的情况下,你认为哪些因素对于提高VGG-16模型的test_accuracy最为重要?****Q:可以通过网格搜索或随机搜索等方法来找到最优的超参数。如何实现**(不适用于Pytorch模型)**Q:在提高VGG-16模型test_accuracy的同时,是否可以兼顾模型的训练速度和推理速度?****Q:除了解决问题中提到的方法外,是否有其他创新的优化技术或算法可以应用于
- RMNet: Equivalently Removing Residual Connection from Networks
qgh1223
人工智能计算机视觉深度学习剪枝
RMNet:EquivalentlyRemovingResidualConnectionfromNetworks论文链接:https://arxiv.org/pdf/2111.00687.pdf源码链接:https://hub.nuaa.cf//fxmeng/RMNet简介自从AlexNet问世以来,SOTA的CNN架构变得越来越深。例如,AlexNet只有5个卷积层,很快被VGG和GoogleN
- PyTorch复现网络模型VGG
DogDaoDao
深度学习人工智能VGG深度学习pythonPycharmPyTorch
VGG原论文地址:https://arxiv.org/abs/1409.1556VGG是VisualGeometryGroup(视觉几何组)的缩写,它是一个在计算机视觉领域中非常有影响力的研究团队,主要隶属于牛津大学的工程系和科学系。VGG以其对卷积神经网络(ConvolutionalNeuralNetworks,CNNs)结构的研究而闻名,特别是在ILSVRC(ImageNetLargeScal
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>