(L2-026)小字辈(带权并查集)

题目链接:PTA | 程序设计类实验辅助教学平台

(L2-026)小字辈(带权并查集)_第1张图片

题目要求辈分最小的成员的编号,辈分之间的维护显然可以用带权并查集来实现,距离表示辈分, 然后剩下的就是一个基本的带权并查集模板了,需要注意的是我们处理完所有的合并操作后需要再对所有点进行一次find操作,保证每个点的d数组都被完全更新,因为我们的find操作中带有更新距离的操作,每次find(x)操作只会更新x及其所有祖先的d数组,而不在这个范围内的数组则不会被更新,由于我们的merge操作并没有求出真实的d值,只是把他的d数组设置为了他的父节点+1,但是他父亲节点的d数组值不一定是正确的,可能也只是依赖于他父亲节点的父亲节点,所以我们处理完所有的关系后还需要依次对1~n中的数进行find操作,这样才能保证最后的d数组值是正确的,下面是代码:

#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
const int N=100003;
int fu[N],d[N],ans[N],tt;
int find(int x)
{
	int t=fu[x];
	if(x==fu[x]) return x;
	fu[x]=find(fu[x]);
	d[x]+=d[t];
	return fu[x];
}
void merge(int x,int y)
{
	int fx=find(x),fy=find(y);
	if(fx==fy) return ;
	fu[fx]=fy;
	d[x]=1+d[y];
}
int main()
{
	int n;
	cin>>n;
	for(int i=1;i<=n;i++)
		fu[i]=i;
	int t;
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&t);
		if(t==-1) continue;
		merge(i,t);
	}
	for(int i=1;i<=n;i++) find(i);//更新一下 
	int mx=0;
	for(int i=1;i<=n;i++)
		mx=max(mx,d[i]);
	printf("%d\n",mx+1);
	for(int i=1;i<=n;i++)
		if(d[i]==mx) ans[++tt]=i;
	for(int i=1;i<=tt;i++)
	{
		printf("%d",ans[i]);
		if(i!=tt) printf(" ");
	}
	return 0;
} 

你可能感兴趣的:(并查集,天梯)