⭐ 作者:小胡_不糊涂
作者主页:小胡_不糊涂的个人主页
收录专栏:浅谈数据结构
持续更文,关注博主少走弯路,谢谢大家支持
首先,我们知道队列是一种先进先出(FIFO)的数据结构,但有些情况下,操作的数据可能带有优先级,一般出队列时,可能需要优先级高的元素先出队列。
该中场景下,使用队列显然不合适,比如:在手机上玩游戏的时候,如果有来电,那么系统应该优先处理打进来的电话。
在这种情况下,数据结构应该提供两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象。这种数据结构就是优先级队列(Priority Queue)。
JDK1.8中的PriorityQueue底层使用了堆这种数据结构,而堆实际就是在完全二叉树的基础上进行了一些调整。
如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中,并满足:Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 且 Ki >= K2i+2) i = 0,1,2…,则称为小堆(或大堆)。
将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
堆的性质:
从堆的概念可知,堆是一棵完全二叉树,因此可以层序的规则采用顺序的方式来高效存储。
对于非完全二叉树,则不适合使用顺序方式进行存储,因为为了能够还原二叉树,空间中必须要存储空节点,就会导致空间利用率比较低。
将元素存储到数组中后,可以根据二叉树的性质对树进行还原。假设i为节点在数组中的下标,则有:
- 如果i为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i - 1)/2–向下取整
- 如果2 * i + 1 小于节点个数,则节点i的左孩子下标为2 * i + 1,否则没有左孩子
- 如果2 * i + 2 小于节点个数,则节点i的右孩子下标为2 * i + 2,否则没有右孩子
对于集合{ 27,15,19,18,28,34,65,49,25,37 }中的数据,如果将其创建成堆呢?
仔细观察上图后发现:根节点的左右子树已经完全满足堆的性质,因此只需将根节点向下调整好即可。
向下调整过程(以小堆为例):
- parent右孩子如果存在,找到左右孩子中最小的孩子,让child进行标记
- 将parent与较小的孩子child比较,如果:parent小于较小的孩子child,调整结束;否则:交换parent与较小的孩子child,交换完成之后,parent中大的元素向下移动,可能导致子树不满足对的性质,因此需要继续向下调整,即parent = child;child = parent*2+1;然后继续第2步。
private void shiftDown(int parent,int len) {
int child = 2*parent+1;
//至少有左孩子:
while (child < len) {
//左孩子和右孩子比较大小,如果右孩子的值小,则那么
if(child+1 < len && elem[child] > elem[child+1]) {
child = child+1;
}
//走完上述if语句,在child下标一定保存的是左右两个孩子最小值的下标
if(elem[child] < elem[parent]) {
//交换
swap(child,parent);
parent = child;
child = 2*parent+1;
}else {
break;
}
}
}
private void swap(int i,int j) {
int tmp = elem[i];
elem[i] = elem[j];
elem[j] = tmp;
}
在调整以parent为根的二叉树时,必须要满足parent的左子树和右子树已经是堆了才可以向下调整。
时间复杂度分析:最坏的情况即图示的情况,从根一路比较到叶子,比较的次数为完全二叉树的高度,即时间复杂度为O(log2n)。
对于普通的序列{ 1,5,3,8,7,6 },即根节点的左右子树不满足堆的特性,又该如何调整呢?
public static void createHeap(int[] array) {
// 找倒数第一个非叶子节点,从该节点位置开始往前一直到根节点,遇到一个节点,应用向下调整
int root = ((array.length-1-1)>>1);//int root = ((array.length-1-1)/2);
for (; root >= 0; root--) {
shiftDown(array, root);
}
}
因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):
因此:建堆的时间复杂度为O(N)
堆的插入总共需要两个步骤:
public void shiftUp(int child) {
// 找到child的双亲
int parent = (child - 1) / 2;
while (child > 0) {
// 如果双亲比孩子小,parent满足堆的性质,调整结束
if (elem[parent] < elem[child]) {
break;
}
else{
// 将双亲与孩子节点进行交换
int t = elem[parent];
elem[parent] = elem[child];
elem[child] = t;
// 大的元素向下移动,可能到值子树不满足对的性质,因此需要继续向上调增
child = parent;
parent = (child - 1) / 2;
}
}
}
堆的删除一定删除的是堆顶元素。具体如下:
Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的。
关于PriorityQueue的使用要注意:
import java.util.PriorityQueue;
构造器 | 功能介绍 |
---|---|
PriorityQueue() | 创建一个空的优先级队列,默认容量是11 |
PriorityQueue(intinitialCapacity) | 创建一个初始容量为initialCapacity的优先级队列,注意:initialCapacity不能小于1,否则会抛IllegalArgumentException异常 |
PriorityQueue(Collection c) | 用一个集合来创建优先级队列 |
上述方法的实现:
static void TestPriorityQueue(){
// 创建一个空的优先级队列,底层默认容量是11
PriorityQueue<Integer> q1 = new PriorityQueue<>();
// 创建一个空的优先级队列,底层的容量为initialCapacity
PriorityQueue<Integer> q2 = new PriorityQueue<>(100);
ArrayList<Integer> list = new ArrayList<>();
list.add(4);
list.add(3);
list.add(2);
list.add(1);
// 用ArrayList对象来构造一个优先级队列的对象
PriorityQueue<Integer> q3 = new PriorityQueue<>(list);
System.out.println(q3.size());//4
System.out.println(q3.peek());//1
}
函数名 | 功能介绍 |
---|---|
boolean offer(E e) | 插入元素e,插入成功返回true,如果e对象为空,抛出NullPointerException异常,时 |
间复杂度:O(log2N) ,注意:空间不够时候会进行扩容 | |
E peek() | 获取优先级最高的元素,如果优先级队列为空,返回null |
E poll() | 移除优先级最高的元素并返回,如果优先级队列为空,返回null |
int size() | 获取有效元素的个数 |
void clear() | 清空 |
boolean isEmpty() | 检测优先级队列是否为空,空返回true |
上述功能的实现:
static void TestPriorityQueue2(){
int[] arr = {4,1,9,2,8,0,7,3,6,5};
// 一般在创建优先级队列对象时,如果知道元素个数,建议就直接将底层容量给好
// 否则在插入时需要不多的扩容
// 扩容机制:开辟更大的空间,拷贝元素,这样效率会比较低
PriorityQueue<Integer> q = new PriorityQueue<>(arr.length);
for (int e: arr) {
q.offer(e);
}
System.out.println(q.size()); // 打印优先级队列中有效元素个数 10
System.out.println(q.peek()); // 获取优先级最高的元素 0
// 从优先级队列中删除两个元素,再次获取优先级最高的元素
q.poll();
q.poll();
System.out.println(q.size()); // 打印优先级队列中有效元素个数 8
System.out.println(q.peek()); // 获取优先级最高的元素 2
q.offer(0);
System.out.println(q.peek()); // 获取优先级最高的元素 0
// 将优先级队列中的有效元素删除掉,检测其是否为空
q.clear();
if(q.isEmpty()){
System.out.println("优先级队列已经为空!!!");
}else{
System.out.println("优先级队列不为空");
}
}
PriorityQueue的扩容方式:
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
private void grow(int minCapacity) {
int oldCapacity = queue.length;
// Double size if small; else grow by 50%
int newCapacity = oldCapacity + ((oldCapacity < 64) ?(oldCapacity + 2) :(oldCapacity >> 1));
// overflow-conscious code
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
queue = Arrays.copyOf(queue, newCapacity);
}
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?Integer.MAX_VALUE :MAX_ARRAY_SIZE;
}
优先级队列的扩容说明: