- 隐马尔可夫模型(HMM):观测背后的状态解码艺术
大千AI助手
人工智能Python#OTHER数据挖掘人工智能机器学习算法HMM马尔科夫概率论
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心概念:双重随机过程隐马尔可夫模型(HiddenMarkovModel,HMM)是一种通过可观测序列推断隐含状态序列的概率图模型,包含两个核心随机过程:隐含状态链:不可观测的马尔可夫过程${q_t}$P(qt∣qt−1,qt−2,…,q1)=P(
- MATLAB随机模拟技术在气候模型中的应用
本文还有配套的精品资源,点击获取简介:MATLAB是科学研究和工程领域中广泛使用的一款数学计算与编程软件,尤其在气象学和气候模拟方面有着重要的应用。’Fletcher_2019_Learning_Climate’项目通过MATLAB实现的随机模拟方法帮助理解气候变化。本文将详细探讨该项目的关键内容,包括气候模型的构成、随机过程与统计方法的运用、MATLAB编程技能、气候数据处理与分析、结果可视化以
- 马尔可夫链:随机过程的记忆法则与演化密码
大千AI助手
人工智能Python#OTHERpython人工智能马尔科夫链MC算法随机过程
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心定义:无记忆的随机演化马尔可夫链(MarkovChain)是一种具有马尔可夫性质的离散随机过程,其核心特征是:未来状态仅取决于当前状态,与历史路径无关数学表述:[P(Xt+1=xt+1∣Xt=xt,Xt−1=xt−1,…,X0=x0)=P(Xt
- 隐马尔可夫模型:语音识别系统的时序解码引擎
大千AI助手
人工智能Python#OTHER语音识别人工智能机器学习概率马尔科夫链HMM
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!1HMM与语音识别的理论基础隐马尔可夫模型(HMM)作为一种双重随机过程的统计模型,其核心在于描述一个包含隐含状态的马尔可夫链,以及这些状态生成可观测输出的概率分布。在语音识别领域,HMM的时序建模能力与语音信号的特性形成了完美契合:隐含状态:对应语音
- 随机过程chap1基本概念
八点叫什么
随机过程笔记
思维导图(受伤了,一整张的太大塞不上来)重点知识辨析一维概率密度求解指路例题5、例题6两道例题给出了求解概率密度的两种思路:显式分布直接套原概率密度公式求解(如正态分布)隐式分布先求分布函数再进行求导得概率密度函数(如指数分布)带入原题细致分析——ex5<
- Python 标准库之 random 模块
Json19970108018
Python进阶应用教程python前端数据库
Python的random模块提供了生成伪随机数的工具,可用于模拟随机过程、生成测试数据、实现随机化算法等场景。以下是该模块的核心功能和常见用法:1.随机数生成基础1.1浮点数随机数pythonimportrandom#生成[0.0,1.0)范围内的随机浮点数random.random()#生成[a,b]范围内的随机浮点数random.uniform(1,10)1.2整数随机数python#生成[
- 清风数学建模个人笔记--模糊综合评价
fvdj0
数学建模笔记
目录一、量二、分类三、模糊函数的三种表示方法四、应用:模糊综合评价(评判)一、量①确定性:经典数学(几何、代数)②不确定性:随机性(概率论、随机过程)灰性(灰色系统)模糊性(模糊数学)二、分类:偏小型:年轻、小、冷中间型:中年、中、暖偏大型:年老、大、热三、模糊函数的三种表示方法(1)模糊统计法(设计调查问卷,不推荐,主观性最弱)(2)借助已有的尺度(需要已有的指标,并能收集到数据)论域模糊集隶属
- 机器学习与深度学习16-概率论和统计学01
my_q
机器学习与深度学习机器学习深度学习概率论
目录前文回顾1.什么是概率论和统计学2.概率的基本概念3.什么是概率密度函数和累积分布函数4.均值、中位数与众数前文回顾上一篇文章地址:链接1.什么是概率论和统计学概率论和统计学是数学中重要的分支,用于研究随机事件和数据的分布、关联性以及不确定性。概率论是研究随机事件发生的可能性和规律的数学学科。它提供了一套工具和方法来描述和分析随机变量、随机过程以及他们之间的关系。概率论包括概率分布、随机变量、
- 【深度学习新浪潮】如何入门三维重建?
小米玄戒Andrew
深度学习新浪潮图像处理基石深度学习人工智能图像处理计算机视觉python视觉几何opencv
入门三维重建算法技术需要结合数学基础、计算机视觉理论、编程实践和项目经验,以下是系统的学习路径和建议:一、基础知识储备1.数学基础线性代数:矩阵运算、向量空间、特征分解(用于相机矩阵、变换矩阵推导)。几何基础:三维几何(点、线、面的表示)、射影几何(单应矩阵、本质矩阵、基础矩阵)、李群与李代数(SLAM中的位姿优化)。概率与统计:贝叶斯估计、概率图模型(SLAM中的状态估计)、随机过程(滤波算法如
- 我2025上岸大模型就靠它了,冲击大厂大模型岗位!大模型学习路线(2025最新)从零基础入门到精通_大模型学习路线
大模型老炮
学习人工智能程序员Agent大模型教学知识库大模型
大模型学习路线图第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。\1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRoss,《概率论与随机过程》在线课程:KhanAcad
- 神仙级大模型教程分享,不用感谢,请叫我活雷锋!大模型 学习路线非常详细_大模型学习路线(2025最新)
程序员辣条
学习人工智能大模型产品经理智能体大模型教程AI大模型
大模型学习路线图第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRoss,《概率论与随机过程》在线课程:KhanAcade
- 汽车平顺性与仿真分析matlab,基于MATLAB/Simscape的汽车平顺性的教学法
磅礴科技
152教育现代化传媒品牌投稿邮箱:
[email protected]课程与教学《汽车理论》是车辆工程专业的必修基础课程,而其中平顺性的内容则是重点和难点,其内容涉及到振动理论、随机过程、复变函数、概率论及数理统计等相关知识,按照传统的教学方法,效果不尽人意。而基于Matlab/Simulink建模仿真的教学法,需要先推导出数学模型,然后再根据数学模型,利用相关的模块建立仿真模型,建模相对复杂
- Python:几何布朗运动模拟
潮易
python开发语言
这是一个关于Python中如何使用GeometricBrownianMotion(GBM)来模拟股票价格变化的简单问题。GeometricBrownianMotion是一种随机过程,常用于模拟股票价格等金融变量的变动。首先,我们需要导入一些必要的库:numpy用于数学运算,matplotlib用于数据可视化,以及pandas用于处理数据。然后,我们可以定义一个函数来生成GBM路径:```pytho
- 随机过程,相关函数的一个例题|柯尔莫哥洛夫存在定理
学渣67656
概率论
问题描述我们有两个周期为LLL的函数g1(t)g_1(t)g1(t)和g2(t)g_2(t)g2(t),并定义随机过程:X(t)=g1(t+ε),Y(t)=g2(t+ε),X(t)=g_1(t+\varepsilon),\quadY(t)=g_2(t+\varepsilon),X(t)=g1(t+ε),Y(t)=g2(t+ε),其中ε\varepsilonε是一个均匀分布在[0,L][0,L][0
- 现代教育:大学学科进阶总览
Yuner2000
教育体系大学学科
《现代教育:大学学科进阶总览》目录第一章自然科学1.1数学科学基础数学数理逻辑:模型论/证明论代数几何:概形理论/模空间微分拓扑:流形分类/微分结构数论前沿:朗兰兹纲领/椭圆曲线加密应用数学计算数学:有限元分析/偏微分方程数值解运筹学:组合优化/随机过程金融数学:衍生品定价/风险价值模型统计学生物统计:生存分析/基因组关联研究经济计量:时间序列分析/面板数据模型空间统计:地理加权回归/克里金插值1
- 随机过程2:泊松过程
♚放晴♛~
概率论
系列笔记是本人在上随机过程时整理的。由于这门课是这个学期正在上的,更新速度会比较慢,只能每学完一个章节更新一次。这是泊松过程部分,主要介绍了随机过程的一般理论、泊松过程的定义、数字特征、到达时间分布、到达时间间隔分布以及非时齐泊松过程。随机过程一般理论随机过程研究的范畴是一族相依的(不独立)的随机变量{Xt}\left\{{X_{t}}\right\}{Xt}及其之间的关系。也可以看作在时间的作用
- 随机过程 1:准备知识
♚放晴♛~
概率论
系列笔记是本人在上随机过程时整理的。由于这门课是这个学期正在上的,更新速度会比较慢,只能每学完一个章节更新一次。这是准备知识部分,其中引入的最重要的概念是条件期望。概率的公理化概率测度空间(Ω,F,P)\left({\Omega,\mathcal{F},P}\right)(Ω,F,P)构成一概率测度空间,其中F\mathcal{F}F中的元素被称为随机事件或简称事件,而Ω\OmegaΩ被称为必然事
- 基于随机过程的图像生成:探索新的生成策略
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介随着人们对计算机视觉技术的日益关注和追求,越来越多的人将注意力转移到如何更好地利用大数据、高性能计算设备和现代神经网络技术等新兴技术的能力上。其中一个重要领域是利用随机过程(RandomProcess)及其相关理论进行图像和视频的生成。而传统的基于模糊、轮廓、噪声等生成方式已无法满足现实世界中各种复杂场景的需求。因此,为了提升图像生成的质量和效率,我国国内外很多
- 2025年大模型学习路线:神仙级教程无私分享,助你成为AI领域高手!大模型学习路线就看这一篇就够了!
大模型入门教程
学习人工智能AI大模型大模型大模型学习大模型教程程序员
大模型学习路线图第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRoss,《概率论与随机过程》在线课程:KhanAcade
- 随机过程的基本概念机有限维分布的数字特征
C_VuI
概率论线性代数
随机过程的基本概念及有限维分布的数字特征:从理论到应用在现代科学与技术的众多领域中,随机过程的身影无处不在,它如同一位神秘的幕后操纵者,影响着我们生活的方方面面。今天,咱们就一起来深入探究随机过程的基本概念以及有限维分布的数字特征,说不定能为你打开一扇新的知识大门哦一、随机过程的基本概念(一)定义大揭秘随机过程,简单来说,就是一族依赖于某个参数(通常是时间参数ttt)的随机变量{X(t),t∈T}
- 随机过程概率空间
C_VuI
大数据
σ\sigmaσ代数和最小σ\sigmaσ代数σ\sigmaσ代数σ\sigmaσ代数(σ\sigmaσ-algebra)需满足以下条件:设F\mathcal{F}F是全集XXX的子集族,若满足:全集包含:X∈FX\in\mathcal{F}X∈F补集封闭:若A∈FA\in\mathcal{F}A∈F,则Ac=X∖A∈FA^c=X\setminusA\in\mathcal{F}Ac=X∖A∈F可数
- 数据降维技术研究:Karhunen-Loève展开与快速傅里叶变换的理论基础及应用
人工智能机器学习python
在现代科学计算和数据分析领域,数据降维与压缩技术对于处理高维数据具有重要意义。本文主要探讨两种基础而重要的数学工具:Karhunen-Loève展开(KLE)和快速傅里叶变换(FFT)。通过分析这两种方法的理论基础和应用特点,阐述它们在数据降维中的优势和适用场景。Karhunen-Loève展开的理论与应用理论基础Karhunen-Loève展开是一种基于随机过程谱分解的降维方法。它通过构建最优正
- (3-5)文生图模型架构:扩散模型
码农三叔
训练RAG多模态)人工智能python深度学习大模型文生图多模态
3.5扩散模型扩散模型(DiffusionModels)是一类用于生成图像的深度学习模型,近年来在图像生成任务中取得了显著的进展。扩散模型的基本思想是通过逐步添加噪声到数据中,然后学习从噪声中恢复原始数据的过程。3.5.1扩散模型的基本概念扩散模型是一种基于随机过程的生成模型,通过逐步添加和去除噪声,实现从随机噪声到高质量数据的转化,其独特的训练和生成机制使其在图像生成领域表现出色。1.扩散过程扩
- 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.24 随机宇宙:生成现实世界数据的艺术
精通代码大仙
numpypythonnumpypython开发语言
1.24随机宇宙:生成现实世界数据的艺术目录随机宇宙:生成现实世界数据的艺术引言复杂联合分布的采样技巧随机游走的蒙特卡洛实现基于物理规律的生成模型随机数在加密中的应用总结参考文献引言复杂联合分布的采样技巧随机游走的蒙特卡洛实现基于物理规律的生成模型随机数在加密中的应用总结参考文献随机数生成分布采样物理模拟密码学应用多元正态分布随机过程布朗运动流体动力学安全随机数随机性检验1.24.1引言在数据科学
- 蒙特卡洛模拟(Monte Carlo Simulation)详解
ballball~~
算法蒙特卡洛模拟算法机器学习
简介:个人学习分享,如有错误,欢迎批评指正。历史背景蒙特卡洛模拟的名称来源于摩纳哥的蒙特卡洛赌场,因其依赖于随机性和概率,与赌博中的随机过程有相似之处。该方法的雏形可以追溯到20世纪40年代,二战期间,美国数学家斯坦尼斯拉夫·乌拉姆(StanislawUlam)和约翰·冯·诺依曼(JohnvonNeumann)在研究核武器的概率计算时首次提出了利用随机采样解决复杂问题的思想。随着计算机技术的迅猛发
- 深度学习:从基础到实践(上、下册)(安德鲁·格拉斯纳)
fyjgfyjfg
深度学习人工智能
(pdf):python33+(0m深度学习概述:深度学习是机器学习的一个分支,它试图通过使用深层神经网络来模拟人脑的学习过程。随机性与基础统计学:在深度学习中,随机性起着重要作用,了解基础统计学有助于更好地理解深度学习中的随机过程和不确定性。训练与测试:深度学习模型的训练过程包括使用训练数据来优化模型参数,而测试过程则使用测试数据来评估模型的性能。过拟合与欠拟合:过拟合是指模型在训练数据上表现过
- matlab cdf,Matlab 简单计算PDF和CDF | 学步园
苏晓晓
matlabcdf
通信的魅力就是在于随机性中蕴含的确定性,这也就是为什么你随便拿出一本通信方面的教材,前面几章都会大篇幅的讲解随机过程,随机过程也是研究生必须深入了解的一门课,特别是对于信号处理以及通信专业的学生。在实际工作中,通常会得到很多随机的数,我们要分析它们的分布,最常见的就是用PDF和CDF来描述了。好了,还是举出一个具体例子吧。那么实际中我们要验证是不是符合这样的分布,首先看代码再解释:%%%%%%%%
- 随机过程【张颢】第一章
模拟IC和AI的Learner
随机过程机器学习人工智能
学习目标随机过程主要研究多个随机变量之间的联系。主要分为两个大类:一,线性相关对线性相关的研究主要从以下方面:(1)从时域角度(2)从频域角度主要研究一个重要的过程:(3)高斯过程二,马尔可夫性主要学习:(1)离散时间的马尔可夫链(2)连续时间的马尔可夫链还会学习一个典型的过程(最简单、应用最广泛的马尔可夫过程):(3)泊松过程三,鞅(研究较少,主要用在金融方面)
- 详解DDPG(附pytorch代码)
还有你Y
机器学习深度学习强化学习pytorch深度学习机器学习
目录(1)策略网络的更新(2)更新(3)NormalizedActions(代码中的)(4)详解DDPG和AC算法区别!!!(5)详解DDPG和AC的目标网络(6)其他(6)代码(8)OUNoise(Ornstein-UhlenbeckNoise)(9)DDPG解决离散动作问题(1)策略网络的更新为了最大化策略网络输出的动作在值函数网络中的Q值。DDPG的目标是让策略网络输出的动作能够最大化Q值,
- 随机信号是什么,随机信号的分类
cxylay
声音信号随机信号分类白噪声高斯非平稳
随机信号(RandomSignal)是指在时间或空间上,信号的取值是不可预测的,或者说是由随机过程所生成的信号。随机信号广泛存在于自然界中,例如大气噪声、电磁干扰、地震波等都可以被视为随机信号。随机信号的特点:①不可预测性:随机信号的未来取值无法通过确定性规律准确预测,只能通过统计特性来描述和估计。②统计特性描述:由于随机信号的瞬时值难以预测,因此我们通常通过统计特性,如均值、方差、自相关函数、功
- 安装数据库首次应用
Array_06
javaoraclesql
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
- Weblogic Server Console密码修改和遗忘解决方法
bijian1013
Welogic
在工作中一同事将Weblogic的console的密码忘记了,通过网上查询资料解决,实践整理了一下。
一.修改Console密码
打开weblogic控制台,安全领域 --> myrealm -->&n
- IllegalStateException: Cannot forward a response that is already committed
Cwind
javaServlets
对于初学者来说,一个常见的误解是:当调用 forward() 或者 sendRedirect() 时控制流将会自动跳出原函数。标题所示错误通常是基于此误解而引起的。 示例代码:
protected void doPost() {
if (someCondition) {
sendRedirect();
}
forward(); // Thi
- 基于流的装饰设计模式
木zi_鸣
设计模式
当想要对已有类的对象进行功能增强时,可以定义一个类,将已有对象传入,基于已有的功能,并提供加强功能。
自定义的类成为装饰类
模仿BufferedReader,对Reader进行包装,体现装饰设计模式
装饰类通常会通过构造方法接受被装饰的对象,并基于被装饰的对象功能,提供更强的功能。
装饰模式比继承灵活,避免继承臃肿,降低了类与类之间的关系
装饰类因为增强已有对象,具备的功能该
- Linux中的uniq命令
被触发
linux
Linux命令uniq的作用是过滤重复部分显示文件内容,这个命令读取输入文件,并比较相邻的行。在正常情 况下,第二个及以后更多个重复行将被删去,行比较是根据所用字符集的排序序列进行的。该命令加工后的结果写到输出文件中。输入文件和输出文件必须不同。如 果输入文件用“- ”表示,则从标准输入读取。
AD:
uniq [选项] 文件
说明:这个命令读取输入文件,并比较相邻的行。在正常情况下,第二个
- 正则表达式Pattern
肆无忌惮_
Pattern
正则表达式是符合一定规则的表达式,用来专门操作字符串,对字符创进行匹配,切割,替换,获取。
例如,我们需要对QQ号码格式进行检验
规则是长度6~12位 不能0开头 只能是数字,我们可以一位一位进行比较,利用parseLong进行判断,或者是用正则表达式来匹配[1-9][0-9]{4,14} 或者 [1-9]\d{4,14}
&nbs
- Oracle高级查询之OVER (PARTITION BY ..)
知了ing
oraclesql
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
- Python调试
矮蛋蛋
pythonpdb
原文地址:
http://blog.csdn.net/xuyuefei1988/article/details/19399137
1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:
IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:
http://www.ibm.com/d
- webservice传递自定义对象时函数为空,以及boolean不对应的问题
alleni123
webservice
今天在客户端调用方法
NodeStatus status=iservice.getNodeStatus().
结果NodeStatus的属性都是null。
进行debug之后,发现服务器端返回的确实是有值的对象。
后来发现原来是因为在客户端,NodeStatus的setter全部被我删除了。
本来是因为逻辑上不需要在客户端使用setter, 结果改了之后竟然不能获取带属性值的
- java如何干掉指针,又如何巧妙的通过引用来操作指针————>说的就是java指针
百合不是茶
C语言的强大在于可以直接操作指针的地址,通过改变指针的地址指向来达到更改地址的目的,又是由于c语言的指针过于强大,初学者很难掌握, java的出现解决了c,c++中指针的问题 java将指针封装在底层,开发人员是不能够去操作指针的地址,但是可以通过引用来间接的操作:
定义一个指针p来指向a的地址(&是地址符号):
- Eclipse打不开,提示“An error has occurred.See the log file ***/.log”
bijian1013
eclipse
打开eclipse工作目录的\.metadata\.log文件,发现如下错误:
!ENTRY org.eclipse.osgi 4 0 2012-09-10 09:28:57.139
!MESSAGE Application error
!STACK 1
java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContai
- spring aop实例annotation方法实现
bijian1013
javaspringAOPannotation
在spring aop实例中我们通过配置xml文件来实现AOP,这里学习使用annotation来实现,使用annotation其实就是指明具体的aspect,pointcut和advice。1.申明一个切面(用一个类来实现)在这个切面里,包括了advice和pointcut
AdviceMethods.jav
- [Velocity一]Velocity语法基础入门
bit1129
velocity
用户和开发人员参考文档
http://velocity.apache.org/engine/releases/velocity-1.7/developer-guide.html
注释
1.行级注释##
2.多行注释#* *#
变量定义
使用$开头的字符串是变量定义,例如$var1, $var2,
赋值
使用#set为变量赋值,例
- 【Kafka十一】关于Kafka的副本管理
bit1129
kafka
1. 关于request.required.acks
request.required.acks控制者Producer写请求的什么时候可以确认写成功,默认是0,
0表示即不进行确认即返回。
1表示Leader写成功即返回,此时还没有进行写数据同步到其它Follower Partition中
-1表示根据指定的最少Partition确认后才返回,这个在
Th
- lua统计nginx内部变量数据
ronin47
lua nginx 统计
server {
listen 80;
server_name photo.domain.com;
location /{set $str $uri;
content_by_lua '
local url = ngx.var.uri
local res = ngx.location.capture(
- java-11.二叉树中节点的最大距离
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class MaxLenInBinTree {
/*
a. 1
/ \
2 3
/ \ / \
4 5 6 7
max=4 pass "root"
- Netty源码学习-ReadTimeoutHandler
bylijinnan
javanetty
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
- jquery验证上传文件样式及大小(好用)
cngolon
文件上传jquery验证
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery1.8/jquery-1.8.0.
- 浏览器兼容【转】
cuishikuan
css浏览器IE
浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同
问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大。
碰到频率:100%
解决方案:CSS里 *{margin:0;padding:0;}
备注:这个是最常见的也是最易解决的一个浏览器兼容性问题,几乎所有的CSS文件开头都会用通配符*来设
- Shell特殊变量:Shell $0, $#, $*, $@, $?, $$和命令行参数
daizj
shell$#$?特殊变量
前面已经讲到,变量名只能包含数字、字母和下划线,因为某些包含其他字符的变量有特殊含义,这样的变量被称为特殊变量。例如,$ 表示当前Shell进程的ID,即pid,看下面的代码:
$echo $$
运行结果
29949
特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数。n 是一个数字,表示第几个参数。例如,第一个
- 程序设计KISS 原则-------KEEP IT SIMPLE, STUPID!
dcj3sjt126com
unix
翻到一本书,讲到编程一般原则是kiss:Keep It Simple, Stupid.对这个原则深有体会,其实不仅编程如此,而且系统架构也是如此。
KEEP IT SIMPLE, STUPID! 编写只做一件事情,并且要做好的程序;编写可以在一起工作的程序,编写处理文本流的程序,因为这是通用的接口。这就是UNIX哲学.所有的哲学真 正的浓缩为一个铁一样的定律,高明的工程师的神圣的“KISS 原
- android Activity间List传值
dcj3sjt126com
Activity
第一个Activity:
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import android.app.Activity;import android.content.Intent;import android.os.Bundle;import a
- tomcat 设置java虚拟机内存
eksliang
tomcat 内存设置
转载请出自出处:http://eksliang.iteye.com/blog/2117772
http://eksliang.iteye.com/
常见的内存溢出有以下两种:
java.lang.OutOfMemoryError: PermGen space
java.lang.OutOfMemoryError: Java heap space
------------
- Android 数据库事务处理
gqdy365
android
使用SQLiteDatabase的beginTransaction()方法可以开启一个事务,程序执行到endTransaction() 方法时会检查事务的标志是否为成功,如果程序执行到endTransaction()之前调用了setTransactionSuccessful() 方法设置事务的标志为成功则提交事务,如果没有调用setTransactionSuccessful() 方法则回滚事务。事
- Java 打开浏览器
hw1287789687
打开网址open浏览器open browser打开url打开浏览器
使用java 语言如何打开浏览器呢?
我们先研究下在cmd窗口中,如何打开网址
使用IE 打开
D:\software\bin>cmd /c start iexplore http://hw1287789687.iteye.com/blog/2153709
使用火狐打开
D:\software\bin>cmd /c start firefox http://hw1287789
- ReplaceGoogleCDN:将 Google CDN 替换为国内的 Chrome 插件
justjavac
chromeGooglegoogle apichrome插件
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
- 进程VS.线程
m635674608
线程
资料来源:
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001397567993007df355a3394da48f0bf14960f0c78753f000 1、Apache最早就是采用多进程模式 2、IIS服务器默认采用多线程模式 3、多进程优缺点 优点:
多进程模式最大
- Linux下安装MemCached
字符串
memcached
前提准备:1. MemCached目前最新版本为:1.4.22,可以从官网下载到。2. MemCached依赖libevent,因此在安装MemCached之前需要先安装libevent。2.1 运行下面命令,查看系统是否已安装libevent。[root@SecurityCheck ~]# rpm -qa|grep libevent libevent-headers-1.4.13-4.el6.n
- java设计模式之--jdk动态代理(实现aop编程)
Supanccy2013
javaDAO设计模式AOP
与静态代理类对照的是动态代理类,动态代理类的字节码在程序运行时由Java反射机制动态生成,无需程序员手工编写它的源代码。动态代理类不仅简化了编程工作,而且提高了软件系统的可扩展性,因为Java 反射机制可以生成任意类型的动态代理类。java.lang.reflect 包中的Proxy类和InvocationHandler 接口提供了生成动态代理类的能力。
&
- Spring 4.2新特性-对java8默认方法(default method)定义Bean的支持
wiselyman
spring 4
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {