- 目标跟踪存在问题以及解决方案
选与握
#目标跟踪目标跟踪人工智能计算机视觉
3D跟踪一、数据特性引发的跟踪挑战1.点云稀疏性与远距离特征缺失问题表现:激光雷达点云密度随距离平方衰减(如100米外车辆点云数不足近距离的1/10),导致远距离目标几何特征(如车轮、车顶轮廓)不完整,跟踪时易因特征匹配失败导致ID丢失。典型案例:在高速公路场景中,200米外的卡车因点云稀疏(仅约50个点),跟踪算法难以区分其与大型货车的形状差异,导致轨迹跳跃或ID切换。技术方案:稀疏点云增强与特
- OpenCV CUDA模块设备层-----线性插值函数log()
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述该函数用于创建线性插值访问器,支持对GPU内存中的图像数据进行双线性插值采样。主要应用于图像缩放、旋转等几何变换中需要亚像素级精度的场景。为输入图像构造一个基于“双线性插值”的访问器对象LinearInterPtrSz,可以在CUDA核函数中按需访问缩放后的像素值
- 蔡高厅老师 - 高等数学-阅读笔记 - 01 - 前言、函数【视频第01、02、03、】
Franklin
数学线性代数
高等数学前言;196学时,每周6课主要内容:上册一元、多元函数数,微分学、积分学、矢量代数、空间解析几何无穷级数、微分方程,多元函数微分学和积分学目的:高等数学3基:1高等数学的基本知识2高度数学的基本理论3高等数学的基本计算方法提高数学素养培养:抽象思维、逻辑推理、辩证的思想方法、空间想象能力、分析问题、解决问题的能力为进一步学习打下必要的学习基础和初等数学不同,研究的不是常量而是变量,变量和变
- 认识Jacobian
一碗姜汤
统计学习线性代数矩阵
Jacobian(雅可比矩阵)是数学中用于描述多元函数在某一点处导数的重要概念,广泛应用于微积分、微分几何、数值分析等领域。以下从定义、数学表达、几何意义、应用场景等方面详细解析:一、定义与数学表达1.基本定义若有一个从欧式空间Rn\mathbb{R}^nRn到Rm\mathbb{R}^mRm的多元函数:f:Rn→Rmf:\mathbb{R}^n\to\mathbb{R}^mf:Rn→Rm,其分量
- 代数几何:自然曲线的数学研究
AI天才研究院
ChatGPT计算AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
代数几何:自然曲线的数学研究关键词:代数几何、自然曲线、数学研究、算法、应用摘要:本文深入探讨了代数几何在自然曲线研究中的应用,从基础概念到复杂算法,再到实际项目实战,全面揭示了代数几何在数学研究中的核心地位和深远影响。本文旨在为读者提供一份系统、完整、易于理解的技术指南,帮助深入理解自然曲线的数学本质及其在计算机科学中的广泛应用。目录大纲设计思路为了设计出《代数几何:自然曲线的数学研究》这本书的
- 数学:线性相关和线性无关的关系
千码君2016
数学线性代数系数唯一性定义法矩阵秩法行列式法高维空间的基线性方程组
在线性代数中,线性无关是描述向量组性质的重要概念,它反映了向量组中向量之间是否存在“冗余”或“依赖”关系。以下从定义、判断方法、几何意义及应用等方面详细说明:一、线性无关的定义才成立,则称该向量组线性无关。反之,若存在不全为0的系数使等式成立,则称向量组线性相关。二、核心理解:线性无关的本质三、线性无关的判断方法1.定义法(直接验证)2.矩阵秩法
- 使用随机森林实现目标检测
司南锤
python基础学习AI随机森林
核心实现思路滑动窗口策略:在图像上滑动固定大小的窗口,对每个窗口进行分类多维特征提取:结合统计特征、纹理特征、边缘特征、形状特征等随机森林分类:训练二分类器判断窗口是否包含目标后处理优化:使用非极大值抑制减少重复检测特征工程的重要性LBP纹理特征:捕捉局部纹理模式灰度共生矩阵:描述纹理的统计特性边缘密度:反映目标边界信息形状描述符:圆形度、面积比等几何特征实际应用建议数据收集:收集大量正负样本进行
- 【unitrix】 4.5 库文件介绍(readme.md)
liuyuan77
我的unitrix库rust
unitrix·单位算阵Unitrix:Normalizedphysicalunitmanagementand2Dgeometrycomputingthroughconstifiedmatrices.Deliverszero-costabstractionswithno_stdsupport.单位算阵:通过常量化矩阵实现物理量单位化与2D几何计算规范化。提供零成本抽象,支持no_std环境。Key
- 【QT】QPointF、QRectF、QPolygonF 介绍
我不是程序猿儿
QT之路qt开发语言
QPointF确实存在于Qt框架中,它是一个类,用于表示二维空间中的一个点,其中包含了浮点精度的x和y坐标。主要特点和用途高精度坐标:QPointF使用double类型来存储x和y坐标,这提供了比QPoint(后者存储整数坐标)更高的精度。这在需要精确定位或处理图形和界面元素时特别有用,例如在绘图、图像处理或任何需要几何计算的应用中。数学运算支持:QPointF提供了一系列便利的数学运算,如加法、
- 几何算法与CAD技术:从基础到国产化突破
Lee同学
人工智能几何学算法c++数学建模
在工业设计、建筑建模和智能制造领域,计算机辅助设计(CAD)是连接创意与现实的桥梁。从一枚螺丝钉到一架飞机,CAD技术支撑着现代工业的每一个细节。然而,在光鲜的应用背后,几何算法才是CAD的“心脏”——它不仅定义了如何精确建模,更决定了设计效率与创新边界。本文将深入探讨CAD背后的几何算法核心,并揭秘国内技术如何突破“卡脖子”困境。一、几何建模:数字世界的“雕刻刀”1.边界表示法(B-Rep):高
- OCCT 入门(1)OCCT 简介
一个不务正业的程序猿
OCCT入门c++
文章目录一、OCCT简介1、什么是OCCT(OpenCASCADETechnology)?2、重要特点3、典型应用场景一、OCCT简介1、什么是OCCT(OpenCASCADETechnology)?OCCT是一个开源跨平台的三维几何建模内核,广泛应用于CAD/CAM/CAE、工业仿真、3D打印等领域(如FreeCAD、KiCAD等软件的核心引擎)。提供下面这些基本功能几何建模基础实体(立方体、圆
- 第五节 渲染机制与性能-回流与重绘优化
泽泽爱旅行
css前端javascripthtml
以下是关于回流(Reflow)与重绘(Repaint)优化的全面解析,结合核心原理、触发条件、性能影响及优化策略,帮助开发者深入理解并高效解决渲染性能问题。一、回流与重绘的核心概念回流(Reflow)定义:当元素的几何属性(如尺寸、位置、布局)发生变化时,浏览器需要重新计算渲染树(RenderTree)并更新页面布局,这一过程称为回流。触发条件:修改元素的width、height、margin、p
- PythonOCC中GeomAPI_PointsToBSplineSurface插值方法使用指南
尤颖贝Dora
PythonOCC中GeomAPI_PointsToBSplineSurface插值方法使用指南pythonocc-coretpaviot/pythonocc-core:是一个基于Python的OpenCASCADE(OCCT)几何内核库,提供了三维几何形状的创建、分析和渲染等功能。适合对3D建模、CAD、CAE以及Python有兴趣的开发者。项目地址:https://gitcode.com/gh
- 数学中的代数数论与代数几何
AI天才研究院
计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍在数学的众多分支中,代数数论和代数几何是两个极其重要的领域。代数数论,顾名思义,是研究数论问题的代数方法,主要研究整数、有理数、代数数等的性质。而代数几何则是研究零点集的代数方法,主要研究多项式方程和代数方程组的解的几何性质。这两个领域虽然看似独立,但实际上有着深厚的内在联系,它们的交叉研究已经产生了许多深远的理论和应用。2.核心概念与联系2.1代数数论代数数论的核心概念是代数数,即满
- 数智管理学(二十五)
虚谷23
数智管理学人工智能网络大数据企业数智化创业创新
三、动态资源优化的实现技术动态资源配置的实现离不开先进的技术支撑,以下几项技术是其关键要素:(一)数字孪生技术:虚拟映射真实资源1.虚拟模型构建与实时同步数字孪生技术通过传感器采集物理资源的各种数据,如设备的几何形状、物理特性、运行状态等,利用计算机图形学、建模技术和仿真技术,构建出与物理资源高度相似的虚拟模型。在智能工厂中,对于每一台生产设备,都可以建立对应的数字孪生模型,该模型不仅包括设备的外
- 清风数学建模个人笔记--模糊综合评价
fvdj0
数学建模笔记
目录一、量二、分类三、模糊函数的三种表示方法四、应用:模糊综合评价(评判)一、量①确定性:经典数学(几何、代数)②不确定性:随机性(概率论、随机过程)灰性(灰色系统)模糊性(模糊数学)二、分类:偏小型:年轻、小、冷中间型:中年、中、暖偏大型:年老、大、热三、模糊函数的三种表示方法(1)模糊统计法(设计调查问卷,不推荐,主观性最弱)(2)借助已有的尺度(需要已有的指标,并能收集到数据)论域模糊集隶属
- 腾讯混元3D实现内容生产的“平民化”
速易达网络
数字媒体专业课程3d
腾讯混元3D生成大模型是当前AI驱动3D内容生产的代表性技术,通过几何与纹理解耦、工业级开源、多模态输入等创新,将传统建模流程从“天级”压缩至“秒级”,彻底重构了游戏、影视、工业设计等领域的创作逻辑。以下从技术突破、应用落地及未来趋势三方面深度解析其核心价值:一、技术架构:几何与纹理解耦的工业级突破双模型协作生成框架几何大模型:专注物体结构与空间关系,生成拓扑合理的低多边形白模(面数可精准控制至数
- opencv学习——霍夫变换原理
zqnnn
opencv
最近的项目用到了霍夫变换,感觉自己只是会调用函数,并不清楚原理,所以写这篇记录一下霍夫变换中心思想是通过坐标变换来检测直线,后来经过改进,就可以检测椭圆等将特定图形上的点变换到一组参数空间上,根据参数空间点累计的结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形状的参数(比如说直线,那么就会得到直线的斜率k与截距b,圆就会得到圆心与半径等等)。原始空间到参数空间的变换假设有一条直线L,原
- Three.js 加载器简介
lpfasd123
Threejs学习笔记jsThreejs
1.Three.js加载器简介Three.js提供了多种加载器,用于加载不同格式的3D模型、纹理和其他资源。在本文中使用的是和:GLTFLoaderDRACOLoaderGLTFLoader:用于加载GLTF/GLB格式的3D模型。GLTF是一种轻量级的3D文件格式,支持几何体、材质、动画、场景等数据。返回的对象包含模型的场景(gltf.scene)、动画(gltf.animations)等信息。
- 数学:什么是余弦定理?
千码君2016
数学几何原本几何构造法向量点积法坐标系解析法反推角的大小合力大小文本向量相似性度量
余弦定理是欧氏平面几何学基本定理,它是勾股定理的推广,描述了任意三角形中三条边和一个角的余弦之间的关系。具体内容如下:历史渊源:对余弦定理的研究可追溯到公元前3世纪欧几里得的《几何原本》,但最初它只是以几何定理的身份出现。直到16世纪,法国数学家韦达首次写出了三角形式的余弦定理。17-18世纪,对余弦定理的应用不多,直到19-20世纪,余弦定理才得到广泛应用。应用场景:在解三角形问题中,若已知三边
- 数学:什么是平行四边形法则?
千码君2016
数学合向量共起点对角线向量加法余弦定理力的合成与分解向量代数
平行四边形法则是物理学和数学中用于合成向量的基本法则,主要用于描述如何将两个向量合成为一个合向量,其原理可通过几何图形直观表示。以下是关于该法则的详细介绍:一、定义与几何表达1.基本定义当两个向量以共起点的方式存在时(即它们的起点相同),可以以这两个向量为邻边作一个平行四边形,那么这两个向量所夹的对角线(从共同起点出发的对角线)就表示这两个向量的合向量。2.几何作图步骤设向量OA→\overrig
- 大模型强化微调GRPO——DeepSeekMath: Pushing the Limits of MathematicalReasoning in Open Language Models
樱花的浪漫
对抗生成网络与动作识别强化学习大模型与智能体因果推断语言模型人工智能自然语言处理深度学习机器学习
1.概述大型语言模型(LLM)革新了人工智能领域的数学推理方法,在定量推理基准测试(Hendrycks等,2021年)和几何推理基准测试(Trinh等,2024年)方面取得了重大进展。此外,这些模型在帮助人类解决复杂的数学问题方面也发挥了重要作用(Yao,2023年)。然而,像GPT-4(OpenAI,2023年)和Gemini-Ultra(Anil等,2023年)这样的尖端模型并未公开,目前可获
- AntV F2入门教程
德育处主任Pro
arcgis
以下教程将系统地介绍AntV F2(移动端可视化引擎)的核心组件API,包含安装与引入、画布与图表、数据映射、几何标记、坐标轴、图例、提示、标注和滚动条等,每个API都附带完整示例代码,帮助你快速掌握F2用法。一、安装与引入#安装F2主包npminstall@antv/f2--save#或者使用yarnyarnadd@antv/f2//在小程序或浏览器中引入import{Canvas,Chart,
- 数学符号和标识中英文列表(含义与示例)
纸上笔下
MatheMatiCs算法数学符号英文中文微积分导数
数学符号和标识的参考,涵盖了数学的各个主要分支,并提供清晰的定义和示例,方便快速查找和学习收藏。目录基础数学符号几何符号代数符号线性代数符号概率与统计符号集合论符号逻辑符号微积分与分析符号数字与字母符号特点中英对照:提供符号的英文术语,方便国际交流和文献阅读。应用示例:提供典型数学表达式,例如导数计算(ddx(x2)=2x\frac{d}{dx}(x^2)=2xdxd(x2)=2x)。1.基础数学
- 计算机视觉数据增强技巧:Albumentations库实战指南
xcLeigh
计算机视觉CV计算机视觉人工智能AI数据增强Albumentations
计算机视觉数据增强技巧:Albumentations库实战指南一、前言二、Albumentations库概述2.1Albumentations库的核心优势2.2安装与导入三、Albumentations库基础操作3.1几何变换3.1.1翻转操作3.1.2旋转操作3.2颜色变换3.2.1亮度、对比度和饱和度调整3.2.2随机噪声添加四、Albumentations库高级操作4.1复合变换与概率控制4
- C#Halcon从零开发_Day10_直线拟合
仙贝大饼
C#联合Halcon从零编程算法Halconc#机器视觉直线拟合
一、引言直线拟合应用场景:产品边缘检测:检测产品的直线边缘(如金属板、塑料件的边缘),判断是否符合设计规格。缺陷检测:通过拟合直线检测边缘的直线度,识别是否存在弯曲、断裂或毛刺等缺陷。长度、宽度测量:通过拟合直线计算物体的长度、宽度等几何尺寸。二、具体实施:dev_get_window(WindowHandle)read_image(Image2,'C:/Users/10314/Desktop/r
- D函数.py
是紫焅呢
python开发语言青少年编程visualstudiocode学习方法
前言:函数是编程中的基础概念,它们允许我们封装一段代码,以便在需要时反复调用。通过使用函数,我们不仅可以提高代码的可读性和可维护性,还可以减少重复代码的出现。目录一、函数到底是个啥玩意儿?二、为啥要用函数?三、写第一个函数试试水四、几何计算:从圆面积开始圆面积计算矩形面积计算三角形面积计算五、数学问题:挑战一下自己斐波那契数列阶乘计算素数检查六、列表操作:算算平均值七、看看这些函数到底行不行八、别
- TopNet:基于Transformer的高效点云几何压缩网络模型详解
清风AI
深度学习算法详解及代码复现计算机视觉算法深度学习人工智能计算机视觉神经网络transformer卷积神经网络python
一、研究背景与挑战随着激光雷达(LiDAR)技术的普及,点云数据在自动驾驶、三维重建等领域得到广泛应用。然而,点云数据的无序性、稀疏性给存储和传输带来巨大挑战。传统的点云几何压缩(PCGC)方法难以平衡压缩率与精度,而深度学习方法逐渐成为主流。现有方法主要分为两类:CNN-based方法:通过3D卷积提取局部特征,但受限于固定感受野,难以捕捉长距离依赖。Transformer-based方法:利用
- Matlab | matlab中的图像处理详解
北斗猿
程序语言设计(C语言C++MatlabPython等)matlab算法图像处理
MATLAB图像处理详解这里写目录标题图像处理MATLAB图像处理详解一、图像基础操作1.图像读写与显示2.图像信息获取3.图像类型转换二、图像增强技术1.对比度调整2.去噪处理3.锐化处理三、图像变换1.几何变换2.频域变换四、图像分割1.阈值分割2.边缘检测3.区域分割五、形态学操作1.基本操作2.高级形态学六、特征提取与分析1.区域属性2.纹理特征七、彩色图像处理1.色彩空间转换2.彩色分割
- 【世纪龙科技】几何G6新能源汽车结构原理 教学软件
Century_Dragon
新能源汽车结构原理几何G6汽车仿真教学软件汽车软件构建vrmr
一、产品定位本软件专注于新能源汽车结构原理教学,秉持理虚实一体化教学理念,旨在为师生打造一个边教、边学、边做的高效教学环境,全方位丰富课堂教学环节。二、产品功能多维度展示功能:软件以吉利几何G6新能源轿车为原型,集组成结构展示、结构爆炸、系统工作原理、零部件功用介绍、零件独显、视频、动画播放等多种功能于一体,全面覆盖吉利新能源汽车的十几个关键系统,包括电驱系统、电控系统、电驱冷却系统、动力电池系统
- 关于旗正规则引擎中的MD5加密问题
何必如此
jspMD5规则加密
一般情况下,为了防止个人隐私的泄露,我们都会对用户登录密码进行加密,使数据库相应字段保存的是加密后的字符串,而非原始密码。
在旗正规则引擎中,通过外部调用,可以实现MD5的加密,具体步骤如下:
1.在对象库中选择外部调用,选择“com.flagleader.util.MD5”,在子选项中选择“com.flagleader.util.MD5.getMD5ofStr({arg1})”;
2.在规
- 【Spark101】Scala Promise/Future在Spark中的应用
bit1129
Promise
Promise和Future是Scala用于异步调用并实现结果汇集的并发原语,Scala的Future同JUC里面的Future接口含义相同,Promise理解起来就有些绕。等有时间了再仔细的研究下Promise和Future的语义以及应用场景,具体参见Scala在线文档:http://docs.scala-lang.org/sips/completed/futures-promises.html
- spark sql 访问hive数据的配置详解
daizj
spark sqlhivethriftserver
spark sql 能够通过thriftserver 访问hive数据,默认spark编译的版本是不支持访问hive,因为hive依赖比较多,因此打的包中不包含hive和thriftserver,因此需要自己下载源码进行编译,将hive,thriftserver打包进去才能够访问,详细配置步骤如下:
1、下载源码
2、下载Maven,并配置
此配置简单,就略过
- HTTP 协议通信
周凡杨
javahttpclienthttp通信
一:简介
HTTPCLIENT,通过JAVA基于HTTP协议进行点与点间的通信!
二: 代码举例
测试类:
import java
- java unix时间戳转换
g21121
java
把java时间戳转换成unix时间戳:
Timestamp appointTime=Timestamp.valueOf(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()))
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd hh:m
- web报表工具FineReport常用函数的用法总结(报表函数)
老A不折腾
web报表finereport总结
说明:本次总结中,凡是以tableName或viewName作为参数因子的。函数在调用的时候均按照先从私有数据源中查找,然后再从公有数据源中查找的顺序。
CLASS
CLASS(object):返回object对象的所属的类。
CNMONEY
CNMONEY(number,unit)返回人民币大写。
number:需要转换的数值型的数。
unit:单位,
- java jni调用c++ 代码 报错
墙头上一根草
javaC++jni
#
# A fatal error has been detected by the Java Runtime Environment:
#
# EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x00000000777c3290, pid=5632, tid=6656
#
# JRE version: Java(TM) SE Ru
- Spring中事件处理de小技巧
aijuans
springSpring 教程Spring 实例Spring 入门Spring3
Spring 中提供一些Aware相关de接口,BeanFactoryAware、 ApplicationContextAware、ResourceLoaderAware、ServletContextAware等等,其中最常用到de匙ApplicationContextAware.实现ApplicationContextAwaredeBean,在Bean被初始后,将会被注入 Applicati
- linux shell ls脚本样例
annan211
linuxlinux ls源码linux 源码
#! /bin/sh -
#查找输入文件的路径
#在查找路径下寻找一个或多个原始文件或文件模式
# 查找路径由特定的环境变量所定义
#标准输出所产生的结果 通常是查找路径下找到的每个文件的第一个实体的完整路径
# 或是filename :not found 的标准错误输出。
#如果文件没有找到 则退出码为0
#否则 即为找不到的文件个数
#语法 pathfind [--
- List,Set,Map遍历方式 (收集的资源,值得看一下)
百合不是茶
listsetMap遍历方式
List特点:元素有放入顺序,元素可重复
Map特点:元素按键值对存储,无放入顺序
Set特点:元素无放入顺序,元素不可重复(注意:元素虽然无放入顺序,但是元素在set中的位置是有该元素的HashCode决定的,其位置其实是固定的)
List接口有三个实现类:LinkedList,ArrayList,Vector
LinkedList:底层基于链表实现,链表内存是散乱的,每一个元素存储本身
- 解决SimpleDateFormat的线程不安全问题的方法
bijian1013
javathread线程安全
在Java项目中,我们通常会自己写一个DateUtil类,处理日期和字符串的转换,如下所示:
public class DateUtil01 {
private SimpleDateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
public void format(Date d
- http请求测试实例(采用fastjson解析)
bijian1013
http测试
在实际开发中,我们经常会去做http请求的开发,下面则是如何请求的单元测试小实例,仅供参考。
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.httpclient.HttpClient;
import
- 【RPC框架Hessian三】Hessian 异常处理
bit1129
hessian
RPC异常处理概述
RPC异常处理指是,当客户端调用远端的服务,如果服务执行过程中发生异常,这个异常能否序列到客户端?
如果服务在执行过程中可能发生异常,那么在服务接口的声明中,就该声明该接口可能抛出的异常。
在Hessian中,服务器端发生异常,可以将异常信息从服务器端序列化到客户端,因为Exception本身是实现了Serializable的
- 【日志分析】日志分析工具
bit1129
日志分析
1. 网站日志实时分析工具 GoAccess
http://www.vpsee.com/2014/02/a-real-time-web-log-analyzer-goaccess/
2. 通过日志监控并收集 Java 应用程序性能数据(Perf4J)
http://www.ibm.com/developerworks/cn/java/j-lo-logforperf/
3.log.io
和
- nginx优化加强战斗力及遇到的坑解决
ronin47
nginx 优化
先说遇到个坑,第一个是负载问题,这个问题与架构有关,由于我设计架构多了两层,结果导致会话负载只转向一个。解决这样的问题思路有两个:一是改变负载策略,二是更改架构设计。
由于采用动静分离部署,而nginx又设计了静态,结果客户端去读nginx静态,访问量上来,页面加载很慢。解决:二者留其一。最好是保留apache服务器。
来以下优化:
- java-50-输入两棵二叉树A和B,判断树B是不是A的子结构
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/25411174201011445550396/
import ljn.help.*;
public class HasSubtree {
/**Q50.
* 输入两棵二叉树A和B,判断树B是不是A的子结构。
例如,下图中的两棵树A和B,由于A中有一部分子树的结构和B是一
- mongoDB 备份与恢复
开窍的石头
mongDB备份与恢复
Mongodb导出与导入
1: 导入/导出可以操作的是本地的mongodb服务器,也可以是远程的.
所以,都有如下通用选项:
-h host 主机
--port port 端口
-u username 用户名
-p passwd 密码
2: mongoexport 导出json格式的文件
- [网络与通讯]椭圆轨道计算的一些问题
comsci
网络
如果按照中国古代农历的历法,现在应该是某个季节的开始,但是由于农历历法是3000年前的天文观测数据,如果按照现在的天文学记录来进行修正的话,这个季节已经过去一段时间了。。。。。
也就是说,还要再等3000年。才有机会了,太阳系的行星的椭圆轨道受到外来天体的干扰,轨道次序发生了变
- 软件专利如何申请
cuiyadll
软件专利申请
软件技术可以申请软件著作权以保护软件源代码,也可以申请发明专利以保护软件流程中的步骤执行方式。专利保护的是软件解决问题的思想,而软件著作权保护的是软件代码(即软件思想的表达形式)。例如,离线传送文件,那发明专利保护是如何实现离线传送文件。基于相同的软件思想,但实现离线传送的程序代码有千千万万种,每种代码都可以享有各自的软件著作权。申请一个软件发明专利的代理费大概需要5000-8000申请发明专利可
- Android学习笔记
darrenzhu
android
1.启动一个AVD
2.命令行运行adb shell可连接到AVD,这也就是命令行客户端
3.如何启动一个程序
am start -n package name/.activityName
am start -n com.example.helloworld/.MainActivity
启动Android设置工具的命令如下所示:
# am start -
- apache虚拟机配置,本地多域名访问本地网站
dcj3sjt126com
apache
现在假定你有两个目录,一个存在于 /htdocs/a,另一个存在于 /htdocs/b 。
现在你想要在本地测试的时候访问 www.freeman.com 对应的目录是 /xampp/htdocs/freeman ,访问 www.duchengjiu.com 对应的目录是 /htdocs/duchengjiu。
1、首先修改C盘WINDOWS\system32\drivers\etc目录下的
- yii2 restful web服务[速率限制]
dcj3sjt126com
PHPyii2
速率限制
为防止滥用,你应该考虑增加速率限制到您的API。 例如,您可以限制每个用户的API的使用是在10分钟内最多100次的API调用。 如果一个用户同一个时间段内太多的请求被接收, 将返回响应状态代码 429 (这意味着过多的请求)。
要启用速率限制, [[yii\web\User::identityClass|user identity class]] 应该实现 [[yii\filter
- Hadoop2.5.2安装——单机模式
eksliang
hadoophadoop单机部署
转载请出自出处:http://eksliang.iteye.com/blog/2185414 一、概述
Hadoop有三种模式 单机模式、伪分布模式和完全分布模式,这里先简单介绍单机模式 ,默认情况下,Hadoop被配置成一个非分布式模式,独立运行JAVA进程,适合开始做调试工作。
二、下载地址
Hadoop 网址http:
- LoadMoreListView+SwipeRefreshLayout(分页下拉)基本结构
gundumw100
android
一切为了快速迭代
import java.util.ArrayList;
import org.json.JSONObject;
import android.animation.ObjectAnimator;
import android.os.Bundle;
import android.support.v4.widget.SwipeRefreshLayo
- 三道简单的前端HTML/CSS题目
ini
htmlWeb前端css题目
使用CSS为多个网页进行相同风格的布局和外观设置时,为了方便对这些网页进行修改,最好使用( )。http://hovertree.com/shortanswer/bjae/7bd72acca3206862.htm
在HTML中加入<table style=”color:red; font-size:10pt”>,此为( )。http://hovertree.com/s
- overrided方法编译错误
kane_xie
override
问题描述:
在实现类中的某一或某几个Override方法发生编译错误如下:
Name clash: The method put(String) of type XXXServiceImpl has the same erasure as put(String) of type XXXService but does not override it
当去掉@Over
- Java中使用代理IP获取网址内容(防IP被封,做数据爬虫)
mcj8089
免费代理IP代理IP数据爬虫JAVA设置代理IP爬虫封IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
Java语言有两种方式使用代理IP访问网址并获取内容,
方式一,设置System系统属性
// 设置代理IP
System.getProper
- Nodejs Express 报错之 listen EADDRINUSE
qiaolevip
每天进步一点点学习永无止境nodejs纵观千象
当你启动 nodejs服务报错:
>node app
Express server listening on port 80
events.js:85
throw er; // Unhandled 'error' event
^
Error: listen EADDRINUSE
at exports._errnoException (
- C++中三种new的用法
_荆棘鸟_
C++new
转载自:http://news.ccidnet.com/art/32855/20100713/2114025_1.html
作者: mt
其一是new operator,也叫new表达式;其二是operator new,也叫new操作符。这两个英文名称起的也太绝了,很容易搞混,那就记中文名称吧。new表达式比较常见,也最常用,例如:
string* ps = new string("
- Ruby深入研究笔记1
wudixiaotie
Ruby
module是可以定义private方法的
module MTest
def aaa
puts "aaa"
private_method
end
private
def private_method
puts "this is private_method"
end
end