- ST-Align:一个包含430万训练样本,涵盖了15种细粒度多模态数据集
数据集
2025-01-15,由北航大学、合肥工业大学、中科院信息工程研究所和美团等机构联合创建介绍了一种名为LLaVA-ST的多模态大型语言模型。该模型配备了一个名为ST-Align的数据集,专为细粒度时空多模态理解设计。一、研究背景近年来,多模态大型语言模型(MLLMs)在多模态理解方面取得了显著进展,能够基于图像或视频生成对话或描述。然而,对于需要基于语言输入处理视觉坐标的细粒度多模态理解任务,现有
- PlanLLM: 首个支持开放词汇与封闭集任务的跨模态视频程序规划框架
数据集
2025年1月7号,由杨德杰、赵子敬、刘洋联合提出PlanLLM,一种基于可微调大型语言模型(LLM)的跨模态联合学习框架,用于解决视频程序规划任务。通过引入LLM增强规划模块和互信息最大化模块,PlanLLM突破了现有方法依赖封闭集标签和固定语义描述的限制,实现了对新步骤和任务的泛化能力。该方法在COIN、CrossTask、NIV三个基准数据集上取得显著性能提升,展现了其在弱监督学习中的有效性
- 【APM】Loki日志多行显示
运维归一
DevOpsAPMloki日志并行
上一篇文章我们搭建了Alertmanager和Loki,接下来我们来实现日志并行显示专栏:https://blog.csdn.net/zhanremo3062/category_12552674.html我们只需要修改Promtail服务的配置文件即可multiline:#RE2正则表达式,如果匹配将开始一个新的多行日志块#这个表达式必须被提供firstline:#解析的最大等待时间(Godura
- 基于HarmonyNext的ArkTS实战:构建跨平台金融理财系统
harmonyos-next
基于HarmonyNext的ArkTS实战:构建跨平台金融理财系统引言金融理财是现代人生活中不可或缺的一部分,尤其是在数字化时代,用户对理财工具的需求日益增长。HarmonyNext作为新一代操作系统,结合ArkTS的强大能力,为开发者提供了构建高性能、跨平台金融理财系统的绝佳工具。本文将详细讲解如何利用ArkTS和HarmonyNext构建一个功能完善的金融理财系统,涵盖账户管理、投资组合分析、
- HarmonyNext实战:基于ArkTS的分布式任务调度系统开发
harmonyos-next
HarmonyNext实战:基于ArkTS的分布式任务调度系统开发引言在HarmonyNext生态系统中,分布式任务调度是一个核心且复杂的技术领域。随着设备互联的普及,如何在多设备间高效、可靠地分配和执行任务成为开发者面临的重要挑战。本文将深入探讨如何利用ArkTS语言构建一个高性能的分布式任务调度系统,涵盖从架构设计到代码实现的完整过程。分布式任务调度系统概述分布式任务调度系统的核心目标是将任务
- HarmonyNext实战:基于ArkTS的跨设备分布式计算应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的跨设备分布式计算应用开发引言随着分布式计算技术的快速发展,跨设备协同计算已成为提升应用性能的重要手段。HarmonyNext作为新一代操作系统,提供了强大的分布式能力,而ArkTS作为其开发语言,能够帮助开发者高效实现跨设备分布式计算。本文将详细讲解如何在HarmonyNext平台上使用ArkTS开发一个跨设备分布式计算应用。我们将从分布式计算的基本原理
- HarmonyNext实战:基于ArkTS的跨平台文件管理系统开发
harmonyos-next
HarmonyNext实战:基于ArkTS的跨平台文件管理系统开发引言随着HarmonyNext的发布,ArkTS作为其核心开发语言,为开发者提供了更高效、更灵活的编程体验。本文将围绕文件管理系统的开发,详细讲解如何利用ArkTS构建一个跨平台的高效文件管理工具。通过本案例,您将掌握ArkTS的核心语法、HarmonyNext的API调用以及实际开发中的最佳实践。一、项目背景与需求分析1.1项目背
- 基于oracle linux的 DBI/DBD 标准化安装文档(四)
linux
一、安装DBIDBI(DatabaseInterface)是perl连接数据库的接口。其是perl连接数据库的最优方法,他支持包括Orcale,Sybase,mysql,db2等绝大多数的数据库,下面将简要介绍其安装方法。1.1解压tar-zxvfDBI-1.616_901.tar.gz1.2安装依赖yuminstallperl-ExtUtils-CBuilderperl-ExtUtils-Mak
- c# EasyModbus Modbus TCP 通讯
babala_s
c#服务器数据库
publicstaticModbusClientmodbusClient=null;publicMainViewModel(){modbusClient=newModbusClient("192.168.0.202",502);try{modbusClient.UnitIdentifier=1;//地址modbusClient.Baudrate=9600;modbusClient.Connecti
- 机器学习 [白板推导](三)[线性分类]
神齐的小马
机器学习分类人工智能
4.线性分类4.1.线性分类的典型模型硬分类:输出结果只有0或1这种离散结果;感知机线性判别分析Fisher软分类:会输出0-1之间的值作为各个类别的概率;概率生成模型:高斯判别分析GDA、朴素贝叶斯,主要建模的是p(x⃗,y)p(\vec{x},y)p(x,y)概率判别模型:逻辑回归,主要建模的是p(y∣x⃗)p(y|\vec{x})p(y∣x)4.2.感知机4.2.1.基本模型 模型:f(x
- Collab-Overcooked:专注于多智能体协作的语言模型基准测试平台
数据集
2025-02-27,由北京邮电大学和理想汽车公司联合创建。该平台基于《Overcooked-AI》游戏环境,设计了更具挑战性和实用性的交互任务,目的通过自然语言沟通促进多智能体协作。一、研究背景近年来,基于大型语言模型的智能体系统在复杂任务分解和规划方面展现出巨大潜力,成为自然语言处理领域的研究热点。然而,随着研究的深入,人们发现单个智能体在处理复杂任务时存在局限性,而多智能体系统通过协作能够显
- 书籍-《深度生成模型(第二版)》
书籍:DeepGenerativeModeling作者:JakubM.Tomczak出版:Springer编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《深度生成模型(第二版)》01书籍介绍本书是关于生成式AI背后模型的第一本全面著作,经过彻底修订,涵盖了所有主要类别的深度生成模型,包括混合模型、概率电路、自回归模型、基于流的模型、潜在变量模型、生成对抗网络(GANs)、混合模型、基于得分的
- GitLab使用教程(入门)
青妙山
版本控制GitLab
1、下载安装下载地址:https://git-scm.com/download/win2、配置信息1、查看git配置信息、用户名、邮箱gitconfig--listgitconfiguser.namegitconfiguser.email2、配置本地仓库的用户名和邮箱gitconfig--globaluser.name"YourName"gitconfig--globaluser.email"em
- github上clone代码过程
nfgo
github
从GitHub上拉取代码的过程非常简单,一般通过gitclone命令来完成。以下是详细步骤:下载git工具要下载并安装Git,你可以根据你的操作系统来选择相应的步骤。以下是如何在不同操作系统上安装Git的详细说明:1.在Windows上安装Git访问Git官网:打开浏览器,访问Git官方下载页面:https://git-scm.com/download/win下载安装程序:选择适合你的Window
- mysql中json数组对象mybatis如何自动映射
需求:假如数据库某个表的一个字段是json数据类型,字段名是students,类型是,存的是json格式的学生数组,现要用一个List来接收,如何实现自动转换.1.实现TypeHandlerwhy?如果json字段存的是数组,直接使用"com.baomidou.mybatisplus.extension.handlers.FastjsonTypeHandler"会给你转成List类型;所以需要自己
- vllm部署说明和注意事项
ai一小生
python人工智能持续部署
1、vllm所在docker镜像可去vllm官网提供的镜像地址拉取地址:UsingDocker—vLLMVllm镜像运行需要不同的cuda版本依赖,如上vllm/vllm-openai:v0.7.2需要cuda12.1方可运行。DeepSeek-R1-Distill-Qwen-32B可去modelscope下载:整体大小约为60GB部署DeepSeek-R1-Distill-Qwen-32B模型,
- Kotlin-inline函数特效
左少华
kotlinkotlin开发语言android
在Kotlin里,inline关键字主要用于内联函数与内联属性。下面为你详细介绍:内联函数使用inline关键字修饰的函数,在编译时,编译器会把函数调用处替换成函数体本身,而不是常规的函数调用过程。这样做的好处是能减少函数调用的开销,特别是在使用高阶函数时效果显著。和C语言的宏替换有殊途同归。@Testfunmain3(){inlineFun{println("hello")}}privatein
- 通过docker-compose部署qwen2-vl-7b模型
scutshijie
docker容器运维语言模型
docker-compose部署qwen2-vl-7b模型准备工作docker-compose.yml遇到的报错在ONE-API设置测试脚本准备工作1、安装较新版本的docker-compose2、安装docker-nvidia3、下载qwen2-vl-7b的模型文件,参考:https://modelscope.cn/models/Qwen/Qwen2-VL-7B-Instruct4、建议先仔细查
- s1K 数据集:是一个用于提升语言模型推理能力的高质量数据集。
数据集
2025-02-07,由斯坦福大学、华盛顿大学等研究机构创建了s1K数据集,该数据集包含1,000个精心挑选的问题,并配以推理轨迹和答案,为语言模型推理能力的提升提供了重要的数据基础。一、研究背景近年来,语言模型(LMs)在大规模预训练的基础上取得了显著进展,其性能提升主要依赖于训练时计算资源的增加。然而,随着模型规模的不断扩大,训练成本也急剧上升。为了在有限的资源下进一步提升模型性能,研究者们开
- OSPO Summit 2025 正式定档!议题征集同步开启
开源
历经二十余年的发展,OSPO已然成为企业数字化转型的战略枢纽、产学研协同创新的关键桥梁、公共领域开放生态建设的核心引擎。作为这一进程的重要见证者和推动者,OSPOSummit也将在2025年6月12日迎来它的第三次进化。会议信息时间:2025年6月12日地点:北京议题征集,期待你的声音现在,我们面向全球开源社区决策者、企业技术管理者、学术机构研究者及一线开发者,发起议题征集!诚邀您分享OSPO如何
- ChatGPT智能聊天机器人实现
云端源想
chatgpt机器人
以下是一个从零实现类ChatGPT智能聊天机器人的完整开发指南,包含技术选型、核心代码逻辑和推荐学习资源:—云端平台整理一、技术架构与工具核心模型基座模型:HuggingFaceTransformers库(如GPT-2/GPT-3.5TurboAPI/LLaMA2)轻量化方案:微软DeepSpeed或MetaFairScale(降低显存占用)训练框架PyTorchLightning+Acceler
- Apache Doris 3.0.4 版本正式发布
亲爱的社区小伙伴们,ApacheDoris3.0.4版本已于2025年02月28日正式发布。该版本持续在存算分离、湖仓一体、异步物化视图等方面进行改进提升与问题修复,进一步加强系统的性能和稳定性,欢迎大家下载体验。官网下载:https://doris.apache.org/downloadGitHub下载:https://github.com/apache/doris/releases/tag/3
- 【面试经验】华为 AI软开 计算产品线(面经+时间线)
litterfinger
面试华为人工智能
一.岗位:AI软开二.时间线:投递08.09,机试08.28,测评08.29;面试均线上,一面09.12,二面09.27,三面09.29(本来是09.19线下二三面,但由于本人有事推迟)三.一面(50min)自我介绍简单介绍一下传统知识图谱建设和大模型对于知识的构建的差异和整体的趋势聊聊实习经历中的提示工程和sft具体的工作AI的一个发展历史流程和相关算法的引进知识图谱建设的总体流程回顾机试:老鼠
- 【第十节】windows sdk编程:截获控件消息
攻城狮7号
Windows编程(C++)windowswindows编程windowssdkc++
目录一、控件消息的截获概述二、相关函数三、示例代码四、高级技巧与注意事项五、常见问题解答六、总结一、控件消息的截获概述控件的消息处理函数通常由系统定义,开发者无需干预。但在需要实现特殊交互逻辑(如自定义点击效果、消息过滤或增强功能)时,可通过消息处理函数替换技术截获控件消息。此技术通过替换控件的默认消息处理函数(WindowProcedure),在自定义处理完成后,调用原函数确保消息链完整。该技术
- wordpress导入mysql数据库文件的方法及注意事项
wodrpress资源分享
wordpress数据库mysqlwordpress
WordPress是一个流行的开源内容管理系统,通常用于构建网站和博客。它使用MySQL数据库来存储和管理网站数据。在某些情况下,您可能需要将现有的MySQL数据库导入到新的WordPress安装中。本文将介绍如何导入MySQL数据库文件到WordPress以及需要注意的事项。一、备份现有数据库在进行任何数据库导入操作之前,强烈建议您先备份现有的数据库。这样可以确保在导入过程中出现问题时,您不会丢
- Python学习日记-第二十九天-tcp(客户端)
差点长成吴彦祖
pythonpandastcp/ip网络
系列文章目录tcp介绍tcp特点tcp客户端一、tcp介绍Tcp协议,传输控制协议是一种面向连接的、可靠的、基于字节流的传输层通信协议,由IETF的RFC793定义TCP通信需要经过创建连接、传输数据、终止连接三个步骤TCP通信模型中,在通信开始之前,一定要先建立相关的链接,才能发送数据,类似于生活中的“打电话”(注:之前学习的udp,在通信前,不需要建立相关的链接,只需要发送数据即可,类似于“写
- 2018 Kotlin中的model
Shigq-droid
Kotlinkotlinmodel
数据类我们经常创建主要用于保存数据的类。在这样的类中,一些标准功能和效用函数通常可以从数据中机械地导出。在Kotlin中,这称为数据类,标记为data:dataclassUser(valname:String,valage:Int)编译器自动从主构造函数中声明的所有属性派生以下成员:equals()/hashCode()pair;toString()形式”User(name=John,age=42
- 训练数据重复采样,让正负样本比例1:1
kimi-222
机器学习人工智能深度学习
详细解释resample函数:resample函数来自sklearn.utils,用于从数据集中重新抽样。replace=True表示允许重复抽样,即同一个样本可以被多次选中。n_samples指定抽样的数量。确保训练集数量相同:通过resample函数,你可以确保正训练集和负训练集的数量相同,即使其中一个集的数量小于另一个集的数量。如果n_train_num小于max_train_num,res
- 【北上广深杭大厂AI算法面试题】计算机视觉篇...详解目标检测中的多尺度训练和测试?
努力毕业的小土博^_^
AI算法题库人工智能计算机视觉算法深度学习神经网络目标检测
【北上广深杭大厂AI算法面试题】计算机视觉篇…详解目标检测中的多尺度训练和测试?【北上广深杭大厂AI算法面试题】计算机视觉篇…详解目标检测中的多尺度训练和测试?文章目录【北上广深杭大厂AI算法面试题】计算机视觉篇...详解目标检测中的多尺度训练和测试?前言多尺度训练核心思想:优点与注意点:多尺度测试核心思想:优点与注意点:综合作用参考示例总结欢迎铁子们点赞、关注、收藏!祝大家逢考必过!逢投必中!上
- 信息收集之 子域名收集,子域名爆破_dnsdumpster
2401_89829398
网络
「作者主页」:士别三日wyx「作者简介」:CSDNtop100、阿里云博客专家、华为云享专家、网络安全领域优质创作者「专栏简介」:此文章已录入专栏《网络安全快速入门》子域名收集一、域名爆破原理二、搜索引擎收集子域名三、第三方网站收集子域名1.VirusTotal2.DNSdumpster四、工具收集子域名子域名就是下一级域名的意思,比如map.baidu.com和image.baidu.com就是
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文