2020-06-02

在月球正面,月海是主要的地貌结构,覆盖的面积高达31.2%,它由富含铁元素的玄武岩(火山喷发后冷却下来的熔岩)组成。月海和月陆(主要由斜长岩组成)都有着光滑的地表,它们相互映衬,形成了明暗相间的格局。这使得月球的正面异常美丽,月海也成为了西方文化的“月中人”以及东方文化的“嫦娥、玉兔”的灵感来源。

月球的背面则不那么好看了,那里缺少玄武岩,月海的面积仅有2.5%。在这里,取代月海而成为主角的是月陆上密集的陨坑和环形山。太阳系最大的陨坑——南极艾托肯盆地及其周围的环形山占据了月球背面很大一部分地貌,这个陨坑的直径大约有2500千米,深度达到了8千米。总体看上去,月球背面非常粗糙,不太美观。

科学家认为,对于月球这种大小的天体来说,许多天文过程对其施加的影响应该是两面均衡的,不应该出现两面差异。比如外来天体的撞击,在月球的天空中,地球仅仅遮挡了微不足道的一小部分,无法对月球提供保护,因此月球两面的陨坑和盆地应该是平均分布的。另外,这些盆地形成于小行星或者其它岩石坠入月球的时候,这些撞击会使月壳变形,火山岩浆将会从盆地地表的裂纹中涌出,不停地淤积到低洼地区冷却下来,形成月海。如此推断的话,南极的艾肯托盆地也应该被玄武岩覆盖,但事实却并非如此。由此可见,月球的“双面性”不仅仅是产生地貌差异这么简单。

为了获得更多的月球背面信息,21世纪初,美国宇航局(NASA)重新启动了已经中断很久的月球勘探任务,将探测重点放在了月球背面与其正面的区别上。月球勘测轨道飞行器发现,月球两面不仅仅地表形貌不同,其两面的物质成分和月壳厚度也不同。在月球正面,月壳很薄,只有20~30千米,但是这里克里普岩石非常丰富,并且含有大量的能够发热的放射性元素(比如钍),似乎月球内部的熔岩冷却时全都堆积到了正面;在月球背面,月壳虽然很厚,平均可达60千米,但是物质种类较为单一,主要就是斜长岩。

为什么月球会如此不对称呢?科学家们发挥了自己的想象力,他们或者提出了天体碰撞的假设,或者到月球内部寻求答案,所有的猜测,都讲述了一段月球早期经历的狂暴历史。

两个月球,两次碰撞

对于月球的起源,科学界最主流的假设是1975年提出的碰撞理论。这个理论认为,在太阳系早期,与火星同等量级的“忒伊亚”行星撞击了地球,大量残骸碎片被抛向环地球的轨道。这些物质聚集起来,迅速降温冷却,形成月球。当月球冷却的时候,重的物质下沉而轻的物质上浮到表面,这一过程被称为分异作用。终于,铁质内核形成了,由内向外依次是液态外核、月幔和月壳。月幔虽已开始结晶,但是能够生热的放射性元素仍然使其保持很高的可塑性。在随后的几百万年内,新的小行星撞击创造了巨大的月球盆地,使月幔裂开,随后岩浆上涌,熔岩开始覆盖月球表面。

撞击理论解释了为何月球的总体成分接近地球地幔、为何月球富含高熔点物质以及地月系统角动量、地月质量等问题,但不能解释月球双面的差异。于是,科学家提出了新的假设,月球背面深厚的月壳来自第二个更小的月球。也就是说,当“忒伊亚”撞进地球的时候,残骸碎片形成了两个月球,一大一小,在数千万年之后,又发生了一次碰撞——两个月球亲密接触、合二为一。

美国加州大学的埃里克·艾斯庞用计算机模拟了当时的过程。45亿年前,“忒伊亚”撞击地球,碎屑飞溅,聚集成许多小卫星(包括两个月球),大的月球吸收或者驱逐了其他卫星,只剩下一个直径1000千米的小月球卡在地球与大月球之间所谓的“拉格朗日点”(在两个大物体引力的作用下,能够使小物体稳定的点)处。这样,地球和两个月球的轨道稳定下来,彼此相安无事。然而,地球的潮汐力会不停地将两个月球向外推,渐渐地,这个三角平衡被打破了,来自太阳的重力开始发挥作用。小的月球开始偏离拉格朗日点,向大月球靠近,最终撞向大月球。

这一过程发生得非常缓慢,两者的相对速度为2.5千米/秒,这样的速度放在日常生活中是非常快的,但如果与小行星的撞击速度相比却是非常慢的。这种低速撞击不会形成环形山,但能使小的月球粉身碎骨,将背面的月壳增厚。

月球探测器发现,月球月壳上大都覆盖了一层多孔而又高度粉碎的碎岩和颗粒,科学家们称之为粗风化层,在月陆上其厚度在10米到20米之间,在月海中则有3米到5米。当小月球碰撞到大月球然后散成碎片的时候最容易产生这种粗风化层,所以埃里克·艾斯庞认为“两个月球”的假设与月球勘测轨道飞行器的观测结果是符合的。

你可能感兴趣的:(2020-06-02)