- 《从信息论视角:DataWorks平台下人工智能探寻最优数据编码的深度剖析》
程序猿阿伟
人工智能
在数字化时代,数据如汹涌浪潮般不断涌现,其规模之大、增长速度之快超乎想象。企业和组织每天都要面对海量数据的存储与传输挑战,如何在有限的资源条件下高效处理这些数据,成为亟待解决的关键问题。此时,信息论与人工智能算法为我们开辟了一条新的探索路径,尤其在DataWorks这样强大的大数据平台上,二者的结合蕴含着巨大的潜力。信息论,作为一门研究信息的度量、传输、存储和处理的学科,为理解数据的本质提供了深刻
- 《从信息论视角:DataWorks平台下人工智能探寻最优数据编码的深度剖析》
人工智能深度学习
在数字化时代,数据如汹涌浪潮般不断涌现,其规模之大、增长速度之快超乎想象。企业和组织每天都要面对海量数据的存储与传输挑战,如何在有限的资源条件下高效处理这些数据,成为亟待解决的关键问题。此时,信息论与人工智能算法为我们开辟了一条新的探索路径,尤其在DataWorks这样强大的大数据平台上,二者的结合蕴含着巨大的潜力。信息论,作为一门研究信息的度量、传输、存储和处理的学科,为理解数据的本质提供了深刻
- 结构化思考和金字塔结构之:信息检索与知识获取
AI天才研究院
架构师必知必会系列编程实践大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.1概念定义2.2检索阶段2.3提取阶段3.1信息检索和文本信息处理的组成3.2技术总体架构3.3信息检索的关键技术3.3.1倒排索引和TF-IDF权值3.3.1.1倒排索引3.3.1.2TF-IDF权值3.3.2文档集合模型3.3.3语言模型3.3.3.1词袋模型3.3.3.2n-gram模型3.3.4PageRank算法3.3.5信息熵的实体抽取3
- 完整代码详解:Python实现基于文本内容的用户隐私泄露风险评估
mosquito_lover1
python开发语言
主要应用场景:社交网络隐私风险评估实现一个基于文本内容的用户隐私泄露风险评估系统,涉及多个步骤和技术。以下是一个完整的Python代码示例,涵盖了基于BERT的文本表示、基于聚类的文本隐私体系构建、基于命名实体识别的隐私信息提取、以及基于信息熵的文本隐私量化。1.安装所需的库首先,确保你已经安装了以下Python库:pipinstalltransformersscikit-learnnumpypa
- 网格交易策略调研
柯柯就是我
金融学习记录金融
背景介绍定义:网格交易,是量化交易的一种,是一种稳定的、保险的、收益率不会大起大落的交易方式。起源:信息论之父申农:任何一个价位买进资金的50%,也就是说资金数量:股票市值=50%:50%。股票价格上涨一定幅度就卖出一部分股票,保持剩余的资金数量:剩余股票市值=50%:50%;反之股票价格下跌一定幅度,就用剩余资金买进一部分股票,始终保持剩余资金数量:剩余股票市值=50%:50%。用这个办法来对付
- kl散度度量分布_解读KL散度:从定义到优化方法
weixin_39846364
kl散度度量分布
Kullback-Leibler散度是计算机科学领域内的一个重要概念。数据科学家WillKurt通过一篇博客文章对这一概念进行了介绍,机器之心技术分析师在此基础上进行了解读和扩充。本文为该解读文章的译文。引言这篇博文将介绍KL散度,即相对熵。这篇博文给出了一个理解相对熵的简单例子,因此这里不会试图重写原作者的内容。除了阅读原博客文章之外,这里还会根据我在信息论方面的工作经验给出一些基于原博文的额外
- 机器学习的数学基础(三)——概率与信息论
梦醒沉醉
数学基础概率论信息论
目录1.随机变量2.概率分布2.1离散型变量和概率质量函数2.2连续型变量和概率密度函数3.边缘概率4.条件概率5.条件概率的链式法则6.独立性和条件独立性7.期望、方差和协方差7.1期望7.2方差7.3协方差8.常用概率分布8.1均匀分布U(a,b)U(a,b)U(a,b)8.2Bernoulli分布8.3Multinoulli分布8.4高斯分布(正态分布)N(x;μ,σ2)N(x;\mu,\s
- AI编程赋能Python实现零编程决策树算法
智享食事
算法AI编程python
1.概念理解决策树算法是一种监督学习算法,用于分类和回归任务。它是一种基于树结构的模型,通过一系列的决策规则来对数据进行分类或预测。决策树的每个节点代表一个特征,每个分支代表该特征的一个属性值,而每个叶节点表示一个类别或一个数值。决策树的构建过程通常分为以下几个步骤:1.特征选择:选择最佳的特征来作为当前节点的划分特征,通常使用信息增益、基尼指数或者信息熵等准则来选择最优的特征。2.建立树结构:根
- 互信息的定义与公式
亲持红叶
信息论相关机器学习人工智能
互信息定义公式从条件熵中我们知道,当获取的信息和要研究的食物”有关系时“,这些信息才能帮助我们消除不确定性。如何衡量获取信息和要研究事物“有关系”呢?比如常识告诉我们,一个随机事件“今天深圳下雨”和另一个随机事件“过去24小时深圳空气湿度”相关性很大,但是相关性到底有多大?怎么衡量?再比如“过去24小时深圳空气湿度”似乎就和“北京天气”相关性不大。香农在信息论中提出”互信息“的概念作为两个随机事件
- AGI方向研究
微醺欧耶
agi
要成为一名合格的AGI(通用人工智能)实习生,你需要具备跨学科的知识体系、扎实的技术能力以及前沿研究视野。以下是基于你当前基础的能力扩展方向、关键研究领域以及未来发展的详细分析:---###**一、AGI实习生需具备的核心能力**####1.**数学与理论基础**-**数学基础**:线性代数(矩阵运算、特征值)、概率统计(贝叶斯理论、分布模型)、微积分(梯度优化)、信息论(熵、KL散度)。-**计
- 论文解读(MGAE)《MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs》
虚幻私塾
pythonpython开发语言
优质资源分享学习路线指引(点击解锁)知识定位人群定位Python实战微信订餐小程序进阶级本课程是pythonflask+微信小程序的完美结合,从项目搭建到腾讯云部署上线,打造一个全栈订餐系统。Python量化交易实战入门级手把手带你打造一个易扩展、更安全、效率更高的量化交易系统论文信息论文标题:MGAE:MaskedAutoencodersforSelf-SupervisedLearningonG
- 【新书速荐】《Information-Theoretic Radar Signal Processing(信息论雷达信号处理)》
卖酒的雷达算法工程师
概率论
引言最近,由YujieGu博士和YiminD.Zhang教授主编的新书Information-TheoreticRadarSignalProcessing由Wiley-IEEEPress正式出版。这是信息论雷达信号处理领域的首部专著,全书共分14章,汇集了来自学术界、工业界和政府机构的41位世界知名专家(其中15位为IEEEFellow)的最新研究成果。Information-TheoreticR
- 【AI中数学-信息论-综合实例】 缩小AI巨人:大模型神经网络的压缩与裁剪
云博士的AI课堂
AI中的数学人工智能神经网络深度学习知识蒸馏网络裁剪量化技术模型压缩
第六章:信息论-综合实例第二节:缩小AI巨人:大模型神经网络的压缩与裁剪术在本节中,我们将探讨压缩和裁剪大规模神经网络模型的技术,使其更加高效,适用于实际应用。尽管大规模神经网络在AI中具有强大的能力,但由于其高计算需求、内存使用和推理时间,它们在实际部署中往往面临一些限制。模型压缩和裁剪技术能够使这些“AI巨人”变得更为可管理,同时在性能上不至于损失太多。我们将通过五个在实际应用中具有代表性的案
- 信息熵(entropy)定义公式的简单理解
xiongxyowo
杂文划水
首先公式长这样:H(X)=−∑i=1np(xi)logp(xi)H(X)=-\sum_{i=1}^{n}p\left(x_{i}\right)\logp\left(x_{i}\right)H(X)=−i=1∑np(xi)logp(xi)PxiP_{x_{i}}Pxi表示随机事件X为xix_{i}xi的概率。这里直接给出一些结论。对于某一事件,其发生的概率越小,那么其信息量越大;发生的概率越大,那
- 瞎想:控制论、信息论与系统论:未来汽车产品的“三论融合”与深度思考
天天爱吃肉8218
汽车
引言在科技飞速发展的今天,控制论、信息论与系统论(简称“三论”)作为20世纪的科学革命,正在深刻影响未来汽车产品的设计与研发。无论是自动驾驶、车联网,还是软件定义汽车(SDV),背后都离不开“三论”的理论支撑。本文将系统性地阐述“三论”的原理、本质及未来发展,并深入探讨其与未来汽车产品的深度关联,为读者提供一份兼具专业性与前瞻性的技术解读。一、控制论、信息论与系统论的原理与本质1.控制论:从“反馈
- 音视频开发成长之路与音视频知识点总结
Linux服务器开发
音视频开发webrtcffmpeg音视频开发流媒体服务器开发webrtcFFmpeg嵌入式音视频开发
音视频涉及语音信号处理、数字图像处理、信息论、封装格式、编解码、流媒体协议、网络传输、渲染、算法等。在现实生活中,音视频发挥着越来越重要的作用,如视频会议、直播、短视频、播放器、语音聊天等。所以从事音视频开发是一件有意义的事情,机遇和挑战并存。本文将从:音视频开发基础、音视频高级成长、音视频工作方向、音视频开源库、音视频相关书籍,配套的学习资源等几个方面来进行介绍。那么我们该如何系统的学习音视频开
- 智能优化算法应用:天鹰算法优化脉冲耦合神经网络的图像自动分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法神经网络人工智能
智能优化算法应用:天鹰算法优化脉冲耦合神经网络的图像自动分割文章目录智能优化算法应用:天鹰算法优化脉冲耦合神经网络的图像自动分割1.天鹰算法2.PCNN网络3.实验结果4.参考文献5.Matlab代码摘要:本文利用天鹰算法对脉冲耦合神经网络的参数进行优化,以信息熵作为适应度函数,提高其图像分割的性能。1.天鹰算法天鹰算法原理请参考:https://blog.csdn.net/u011835903/
- AI真的能理解我们这个现实物理世界吗?深度剖析原理、实证及未来走向
AI_DL_CODE
人工智能深度学习AIAI理解世界
摘要:当下,AI与深度学习广泛渗透生活各领域,大模型与海量数据加持下,其是否理解现实物理世界引发热议。文章开篇抛出疑问,随后深入介绍AI深度学习基础,包含神经网络架构、反向传播算法。继而列举AI在物理场景识别、实验数据分析中显露的“理解”迹象,也点明常识性错误、极端场景失效这类反例。从信息论、物理启发式算法剖析理论支撑,探讨融合物理知识路径,并延展至跨学科应用、评估维度、伦理社会问题,最终展望AI
- 决策树算法总结(上:ID3,C4.5决策树)
陈小虾
机器学习ID3决策树决策树
文章目录一、决策树原理1.1决策树简介1.2基本概念二、数学知识2.1信息熵2.2条件熵:2.3信息增益三、ID3决策树3.1特征选择3.2算法思路3.3算法不足四、C4.5决策树算法4.1处理连续特征4.2C4.5决策树特征选取4.3处理缺失值4.4过拟合问题五、决策树C4.5算法的不足决策树是一种特殊的树形结构,一般由节点和有向边组成。其中,节点表示特征、属性或者一个类。而有向边包含有判断条件
- 论文阅读:DeepFake-Adapter: Dual-Level Adapter for DeepFake Detection(Deepfake模型快速调参)
海拉鲁的小厨娘
读论文论文阅读
一、论文信息论文名称:DeepFake-Adapter:Dual-LevelAdapterforDeepFakeDetection作者团队:项目主页:https://github.com/rshaojimmy/DeepFake-Adapter(代码暂未开源)二、动机与创新动机:目前的deepfake检测模型泛化能力差,将其归因于过拟合于低级的伪造模式,现有的deepfake检测方法仅关注低级别的伪
- 智能优化算法应用:堆优化算法优化脉冲耦合神经网络的图像自动分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法神经网络人工智能
智能优化算法应用:堆优化算法优化脉冲耦合神经网络的图像自动分割文章目录智能优化算法应用:堆优化算法优化脉冲耦合神经网络的图像自动分割1.堆优化算法2.PCNN网络3.实验结果4.参考文献5.Matlab代码摘要:本文利用堆优化算法对脉冲耦合神经网络的参数进行优化,以信息熵作为适应度函数,提高其图像分割的性能。1.堆优化算法堆优化算法原理请参考:https://blog.csdn.net/u0118
- 计算机密码体制分为哪两类,密码体制的分类.ppt
约会师老马
计算机密码体制分为哪两类
密码体制的分类.ppt密码学基本理论现代密码学起始于20世纪50年代,1949年Shannon的《TheCommunicationTheoryofSecretSystems》奠定了现代密码学的数学理论基础。密码体制分类(1)换位与代替密码体制序列与分组密码体制对称与非对称密钥密码体制数学理论数论信息论复杂度理论数论--数学皇后素数互素模运算,模逆元同余方程组,孙子问题,中国剩余定理因子分解素数梅森
- 【论文速读】| 利用大语言模型在灰盒模糊测试中生成初始种子
云起无垠
论文速读/精读语言模型p2p人工智能
基本信息论文标题:HarnessingLargeLanguageModelsforSeedGenerationinGreyb0xFuzzing作者:WenxuanShi,YunhangZhang,XinyuXing,JunXu作者单位:NorthwesternUniversity,UniversityofUtah关键词:Greyb0xfuzzing,LargeLanguageModels,Seed
- PSNR、SSIM等图像质量评估指标详解
ballball~~
CVcv图像处理图像质量评估指标
简介:个人学习分享,如有错误,欢迎批评指正。一、PSNR(PeakSignal-to-NoiseRatio)峰值信噪比1.定义PSNR是一种用于衡量两幅图像之间差异的客观指标。它主要用于评估图像压缩、传输或重建算法的效果。PSNR值越高,表示两幅图像越相似,质量损失越小。PSNR基于信号与噪声的概念,其理论基础来自信息论中的信噪比(SNR,Signal-to-NoiseRatio)。PSNR将图像
- dice系数 交叉熵_一文搞懂交叉熵损失
weixin_39721853
dice系数交叉熵
本文从信息论和最大似然估计得角度推导交叉熵作为分类损失函数的依据。从熵来看交叉熵损失信息量信息量来衡量一个事件的不确定性,一个事件发生的概率越大,不确定性越小,则其携带的信息量就越小。设\(X\)是一个离散型随机变量,其取值为集合\(X={x_0,x_1,\dots,x_n}\),则其概率分布函数为\(p(x)=Pr(X=x),x\inX\),则定义事件\(X=x_0\)的信息量为:\[I(x_0
- 数学建模-基于熵权法对Topsis模型的修正
啥都想学点的研究生
矩阵线性代数
topsis模型赋予权重有层次分析法,但层次分析法也有其弊端。层次分析法最大的缺点:判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)针对层次分析法主观性太强的弊端,我们可以采用熵权法给topsis评价模型的各个指标赋权。如何度量信息量的大小,以小明和小王的例子为例:建立信息量I(x)和P(x)之间的关系:信息熵的定义:信息熵越大,信息量是越大还是越小呢
- 为量产而设计:自动驾驶车辆激光雷达旋转外参在线标定与异常排除策略
智驾机器人技术前线
高精定位与大规模建图自动驾驶算法机器人
更多精彩内容,请关注公众号:智驾机器人技术前线1.论文信息论文标题:FaultDetectionandExclusionforRobustOnlineCalibrationofVehicletoLiDARRotationParameter作者:JiwonSeok,ChansooKim,PauloResende,BenazouzBradai,andKichunJo作者单位:韩国首尔大学论文链接:ht
- 决策树(decision tree)
a15957199647
机器学习数据
决策树就是像树结构一样的分类下去,最后来预测输入样本的属于那类标签。本文是本人的学习笔记,所以有些地方也不是很清楚。大概流程就是1.查看子类是否属于同一个类2.如果是,返回类标签,如果不是,找到最佳的分类子集的特征3.划分数据集4.创建分支节点5.对每一个节点重复上述步骤6.返回树首先我们要像一个办法,怎么来确定最佳的分类特征就是为什么要这么划分子集。一般有三种方法:1.Gini不纯度2.信息熵3
- 压缩感知或压缩传感
zhoutongchi
特征提取
由来采样定理(又称取样定理、抽样定理)是采样带限信号过程所遵循的规律,1928年由美国电信工程师H.奈奎斯特首先提出来的,因此称为奈奎斯特采样定理。1948年信息论的创始人C.E.香农对这一定理加以明确说明并正式作为定理引用,因此在许多文献中又称为香农采样定理。该理论支配着几乎所有的信号/图像等的获取、处理、存储、传输等,即:采样率不小于最高频率的两倍(该采样率称作Nyquist采样率)。该理论指
- 压缩感知
weixin_34185320
人工智能python
2019独角兽企业重金招聘Python工程师标准>>>首先,我们必须要认识到这一点,即CS(CompressedSensing)中的Compressed不同于传统信息论和率失真意义上的compression。在CS中,"Compressed"一词更加准确的描述是一个降维采样的过程,而不是在信源编码意义上的“compression”。在CS中,我们是没有关于原始信号像素域的任何信息,仅仅只有观测域信
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement