- r语言手动算两个C指数p值,如何用R语言进行Pvalue显著性标记?
蒲牢森
r语言手动算两个C指数p值
作者:一只想飞的喵审稿:童蒙编辑:angelica箱线图是统计学中较常见的图形之一。这篇文章将讲述如何简单比较两组或多组的平均值,且添加显著性标记。通常情况根据显著性p值的数值大小,分为四类:(1)0.01≤p<0.05,*(2)0.001≤p<0.01,**(3)0.0001≤p<0.001,***(4)p<0.0001,****接下来会讲述三种添加显著性标记的方法。方法1-手动添加1:创建数据
- R语言广义加型模型(GAM)的运用例子及实现教程
Mrrunsen
R语言大学作业r语言开发语言
文章目录步骤1:加载所需包和数据步骤2:数据预处理步骤3:拟合广义加型模型步骤4:查看模型摘要和诊断模型摘要系数估计平滑项模型质量步骤5:预测和可视化结论广义加型模型(GeneralizedAdditiveModel,简称GAM)是一种灵活的非线性建模方法,在统计学和机器学习领域被广泛应用。GAM可以用于拟合非线性关系,适用于多个预测变量之间的复杂关系,并且可以处理连续和分类变量。本教程将向您展示
- python 统计库_《统计学习方法》 Python 库
weixin_39756540
python统计库
新建GitHub仓库仓库名为slmethod,统计学习方法(StatisticalLearningMethod)的简写Public公开仓库勾选InitializethisrepositorywithaREADME.gitignore选择Python添加MITLicensenew下载代码到本地,使用ssh协议。
[email protected]:iOSDevLog/slmethod.git
- 数据挖掘与数据分析
dundunmm
数据挖掘数据挖掘数据分析人工智能
数据挖掘和数据分析是两个密切相关但有所区别的领域,它们都涉及从数据中提取有价值的信息,但在目标、方法和技术上有所不同。数据挖掘vs.数据分析特征数据挖掘数据分析目标从大数据中自动发现知识和模式通过系统分析数据,得出有意义的结论重点数据模式的自动发现、预测模型的构建数据理解、数据清洗、数据总结、假设验证方法机器学习、聚类、回归、关联规则、深度学习等统计学方法、数据可视化、数据清理、假设检验等应用实时
- An Introduction to Statistical Learning with Applicatio
AI天才研究院
Python实战DeepSeekR1&大数据AI人工智能大模型大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.简介1.1定义统计学习(statisticallearning)是一门研究如何从数据中提取知识并应用于预测、决策或其他目的的一门学科。它是机器学习、数据挖掘、计算机视觉等领域的一个分支,是当前热门的AI方向。1.2特点数据驱动:统计学习倾向于采用结构化的数据——如表格或矩阵形式——作为输入;假设空间少:统计学习通常只考虑一种假设空间,即概率模型或概率分布;模型复杂性
- 规控算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
规控算法工程师技术图谱与学习路径规控算法工程师(规划与控制算法工程师)是自动驾驶领域的核心岗位之一,涉及路径规划、行为决策、运动控制等多个技术模块。以下为技术图谱与学习路径的整合,结合行业需求和技术发展趋势。一、技术图谱核心模块数学基础线性代数:矩阵运算、向量空间、特征值分解(用于控制系统建模与优化)。微积分:梯度下降、泰勒展开、动态系统建模(支持控制算法推导)。概率论与统计学:贝叶斯理论、马尔可
- 图像算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
01.图像算法图像算法工程师的技术图谱和学习路径涵盖了多个技术领域,从基础知识到高级算法,涉及计算机视觉、深度学习、图像处理、数学和编程等多个方面。以下是图像算法工程师的技术图谱和学习路径的详细总结。1.基础数学与编程数学基础:线性代数:矩阵运算、特征值、特征向量、奇异值分解(SVD)等概率论与统计:概率分布、贝叶斯定理、最大似然估计(MLE)、假设检验等微积分:导数、梯度、最优化方法(梯度下降、
- 推荐算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务推荐算法学习算法
推荐算法工程师的技术图谱和学习路径可以从多个维度进行概述,可以总结如下:一、技术图谱推荐算法工程师需要掌握的技术栈主要分为以下几个方面:数学基础:微积分、线性代数、概率论与统计学是推荐算法的基础,用于理解模型的数学原理和优化算法。高等数学、最优化理论、几何和图论等知识对于复杂模型的设计和优化至关重要。编程与数据结构:熟练掌握Python、Java等编程语言,具备良好的编程习惯和代码优化能力。掌握数
- 聚类分析tensorflow实例_新手必看的机器学习算法集锦(聚类篇)
道酝欣赏
继上一篇《机器学习算法之分类》中大致梳理了一遍在机器学习中常用的分类算法,类似的,这一姊妹篇中将会梳理一遍机器学习中的聚类算法,最后也会拓展一些其他无监督学习的方法供了解学习。1.机器学习机器学习是近20多年兴起的一门多领域交叉学科,它涉及到概率论、统计学、计算机科学以及软件工程等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类能从数据中自动分析获得规律
- 数据挖掘与数据分析的区别是什么
中琛源科技
数据挖掘与数据分析两者紧密相连,具有循环递归的关系,数据分析结果需要进一步进行数据挖掘才能指导决策,而数据挖掘进行价值评估的过程也需要调整先验约束而再次进行数据分析。从分析的目的来看,数据分析一般是对历史数据进行统计学上的一些分析,数据挖掘更侧重于机器对未来的预测,一般应用于分类、聚类、推荐、关联规则等。从分析的过程来看,数据分析更侧重于统计学上面的一些方法,经过人的推理演译得到结论;数据挖掘更侧
- 线性秩检验
木子算法
非参数统计数学建模概率论
线性秩检验一、引言在统计学的广袤领域中,参数检验通常基于数据服从特定分布(如正态分布)的假设。然而,在实际场景里,数据往往并不满足这些严格假设,此时非参数检验方法便展现出独特优势。线性秩检验作为一种强大的非参数检验手段,能够在不依赖数据分布的前提下,对数据进行深入分析,探寻其中隐藏的规律与差异。本文将全方位深入剖析线性秩检验,涵盖其原理、公式推导以及实际案例应用,助力读者全面掌握这一重要的统计方法
- 【量化金融自学笔记】--开篇.基本术语及学习路径建议
花花 Show Python
量化金融自学笔记金融笔记学习
在当今这个信息爆炸的时代,金融领域正经历着一场前所未有的变革。传统的金融分析方法逐渐被更加科学、精准的量化技术所取代。量化金融,这个曾经高不可攀的领域,如今正逐渐走进大众的视野。它将数学、统计学、计算机科学与金融学深度融合,为我们提供了一种全新的视角去理解和探索金融市场的奥秘。作为一名对量化金融充满热情的自学者,我深知在这个领域中,每一步都充满了挑战与机遇。从最初对复杂数学公式的困惑,到逐渐掌握编
- 【机器学习】平均绝对误差(MAE:Mean Absolute Error)
IT古董
机器学习人工智能机器学习人工智能python
平均绝对误差(MeanAbsoluteError,MAE)是一种衡量预测值与实际值之间平均差异的统计指标。它在机器学习、统计学等领域中广泛应用,用于评估模型的预测精度。与均方误差(MSE)或均方误差根(RMSE)不同,MAE使用误差的绝对值,因此它在处理异常值时更加稳定。1.MAE的定义和公式给定预测值和真实值,MAE的公式为:其中:n是样本总数。是模型的预测值。是对应的真实值。MAE表示了预测值
- 概率论——5 事件的独立性
黑曼巴、。;
概率论
文章目录事件独立性描述性定义数学定义相关定理多事件独立性事件独立性描述性定义设A,BA,BA,B为两个事件,如果其中任何一个事件发生的概率不受另一个事件发生与否的影响,则称事件AAA与BBB相互独立。数学定义数学定义其实可以由条件概率推导得到,当事件AAA与BBB独立时,BBB在AAA的条件下发生的概率应该等于P(B)P(B)P(B),反之亦然,则可以得到下面的等式:P(B∣A)=P(AB)P(A
- 【概率论】多维随机变量及其分布
return bool(1)
概率论概率论学习
文章目录二维随机变量一、二维随机变量的定义二、分布函数的定义三、分布函数的性质1.单调不减2.规范性3.右连续4.非负性四、二维离散型随机变量1.定义2.性质3.联合分布律五、二维连续性随机变量1.定义2.性质3.求法边缘分布一、定义1.边缘分布函数2.边缘分布律3.边缘概率密度条件分布一、条件分布律的定义二、条件概率密度的定义三、两种重要的二维连续性随机变量1.均匀分布2.二维正态分布四、随机变
- AI探索笔记:线性回归
安意诚Matrix
机器学习笔记人工智能笔记线性回归
前言写这篇博客,主要是自己来练练手。网络上教程已经是数不胜数,也都讲得非常清楚了。但自己不动手,知识和能力还是别人的。下面分别用传统方法(sklearn)和神经网络(pytorch)来解决线性回归问题。内容什么是线性回归线性回归(LinearRegression)是统计学和机器学习中最基础且广泛使用的预测模型,用于建立**自变量(输入特征)与因变量(输出目标)**之间的线性关系模型。其核心思想是通
- PCA主成分分析降维算法及其可视化(附完整版代码)
Jason_Orton
算法机器学习数据挖掘人工智能matlab
一.PCA的介绍PCA(PrincipalComponentAnalysis)是一种数据降维技术,旨在将多维指标转换为少数几个综合指标。在统计学中,PCA是简化数据集的一种方法,通过线性变换将数据映射到新的坐标系中。在新的坐标系中,第一主成分捕获数据投影的最大方差,第二主成分捕获第二大方差,依此类推。主成分分析常用于减少数据集的维度,同时保留对方差贡献最大的特征。这是通过保留低阶主成分、忽略高阶主
- JS宏进阶:浅谈曲线回归
jackispy
JS宏进阶回归数据挖掘人工智能javascript
曲线回归是一种统计学方法,用于研究两个或多个变量之间的非线性关系,并找到最能拟合数据点的曲线函数形式。与线性回归不同,曲线回归适用于描述那些不是直线性的变量关系。通过曲线回归,可以建立变量之间的非线性数学模型,用于预测和解释各种实际现象。一、基本概念定义:曲线回归是指对于非线性关系的变量进行回归分析的方法。曲线回归方程一般是以自变量的多项式或其他非线性函数形式表达因变量。目的:曲线回归的主要目的是
- 《李航 统计学习方法》学习笔记——第五章决策树
eveiiii
统计学习决策树算法剪枝python机器学习
决策树5.1决策树模型与学习5.2特征选择5.2.1信息增益5.2.2信息增益比python代码实现例题:信息增益与信息增益比5.3决策树的生成5.3.1ID3算法(python实现)5.3.2C4.5生成算法(python实现)5.4决策树的剪枝5.5CART算法5.5.1CART生成5.5.2CART剪枝习题5.1(python实现)习题5.2(python实现)习题5.3习题5.4参考5.1
- 《李航 统计学习方法》学习笔记——第八章提升方法
eveiiii
统计学习python机器学习人工智能算法
提升方法8.1提升方法AdaBoost8.1.1提升方法的基本思路8.1.2AdaBoost算法8.1.3AdaBoost的例子(代码实现)8.2AdaBoost算法的训练误差分析定理8.1AdaBoost训练误差界定理8.2二分类问题AdaBoost训练误差界8.3AdaBoost算法的解释8.3.1前向分步算法8.3.2前向分步算法与AdaBoost8.4提升树8.4.1提升树模型8.4.2提
- 深入理解SAP HANA Cloud Vector Engine与自查询
VYSAHF
java
学习目标:提示:这里可以添加学习目标例如:一周掌握Java入门知识学习内容:提示:这里可以添加要学的内容例如:搭建Java开发环境掌握Java基本语法掌握条件语句掌握循环语句学习时间:提示:这里可以添加计划学习的时间例如:周一至周五晚上7点—晚上9点周六上午9点-上午11点周日下午3点-下午6点学习产出:提示:这里统计学习计划的总量例如:技术笔记2遍CSDN技术博客3篇习的vlog视频1个
- 数据挖掘中特征发现与特征提取的数学原理
调皮的芋头
数据挖掘人工智能AIGC计算机视觉
好的,我将深入研究数据挖掘中特征发现与特征提取的数学原理,涵盖统计学基础、特征工程的数学方法、以及在机器学习和深度学习中的应用。我会整理相关数学公式和理论,包括主成分分析(PCA)、独立成分分析(ICA)、线性判别分析(LDA)、信息增益、互信息、方差分析等统计方法,并结合金融量化交易的实际应用,确保内容既有理论深度,又能落地实践。完成后,我会通知您!1.统计学基础:描述性统计、方差分析、相关性与
- 大模型学习路线与资源推荐
数字化转型2025
AI投资人工智能
以下是基于多篇参考资料整理的大模型学习路线,涵盖从基础到进阶的完整学习路径,帮助您系统掌握大模型核心技术并应用于实际场景:一、基础阶段:构建核心知识体系编程与数学基础编程语言:优先学习Python,掌握其语法、数据结构及常用库(如NumPy、Pandas、PyTorch)37。数学基础:线性代数、概率论与统计学、微积分是理解模型原理的基石,需重点掌握矩阵运算、概率分布等概念39。深度学习入门神经网
- 统计学基础知识点刷题(task2)
sm376624607
统计学
参考视频:可汗学院《统计学》参考书籍:《深入浅出统计学》文章目录概念1:中心极限定理概念2:置信区间概念3:伯努利分布概念4:误差范围概念5:小样本容量置信区间概念1:中心极限定理核心内容:随着抽样次数趋于∞\infty∞,样本均值的抽样分布趋近于正态分布,且该正态分布的均值为总体均值。X‾服从N(μ,σ/n)\overline{X}服从N(\mu,\sigma/\sqrt{n})X服从N(μ,σ
- 机器学习数学基础:36.φ相关系数分析
@心都
机器学习人工智能
用φ相关系数分析性别与心理测验态度关系的教程一、学习目标学会使用φ相关系数分析两个二分变量(如性别男/女、对心理测验态度肯定/否定)之间的关系,并通过卡方检验判断结果是否具有统计学意义。二、数据准备假设我们想研究青年大学生的性别和对心理测验的态度之间的关系,收集到如下2×22×22×2列联表数据(调查了170170170人):肯定否定合计男生222222888888110110110女生18181
- 读书究竟有什么用?不同的书分别有什么作用?不同的书对人生分别有什么样的影响和意义?...
Lucky小黄人
不同类型的文学作品对人生的作用和意义是不一样的,按照我的阅读经验和理解,对常见文学作品类别和他们对我们的意义做个简单总结:1、统计学、经济学作品这类作品往往可以帮助我们提升对经济现象、宏观政策的敏感度,洞察财富增长的逻辑,说白了就是有助于找到赚钱的路子。比如《权利结构、政治激励和经济增长》、《八次危机》。2、哲学与社会学作品这类作品有助于拓展思想深度,有助于培养大局观,也让我们意识到个体的渺小与社
- 【A/B测试】深度解析:从理论到实践Python实现详解(含源码)
絆人心
python前端开发语言数据分析信息可视化数据挖掘机器学习
目录前言一、什么是A/B测试?A/B测试的常见应用场景二、A/B测试的基本流程三、假设检验:零假设与备择假设Python代码示例:A/B测试的实践四、A/B测试中的统计学方法五、总结附录:完整代码前言A/B测试(也称分流测试)在数据分析和产品优化中扮演重要角色。无论是在网站优化、营销活动还是产品改进中,A/B测试都帮助通过数据驱动决策、测试和验证论文提出了实际操作的基本概念,详细讲解了如何实施A/
- 什么是机器学习?
CM莫问
机器学习模型机器学习人工智能算法
一、概念(维基百科)机器学习是人工智能的一个分支。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。二、主要特点机器学习的主要特点包括:1、数据驱动:机器学习模型的性能主要依赖于输入的数据。数据的质量和数量直接影响模型的准确性和泛化能力,所谓“Garbagein,garbag
- 基于动态规划与0-1整数规划模型的多阶段生产决策问题研究
NovakG_
数据挖掘动态规划数学建模算法
摘要随着市场竞争的日益激烈,企业将以产品质量作为其发展战略重心,以适应激烈的市场竞争与不断变化的用户需求。本文针对某畅销电子产品生产过程中的决策问题,应用统计学中单边检验、二项分布与正态分布的方法,以最小化产品生产成本为目标,建立了动态规划与0-1整数规划模型。通过数学建模与模拟,为企业的生产提供了科学有效的生产决策依据,降低生产成本并优化资源配置。针对问题一,主要解决两个问题:一是需要设计一个最
- 机器学习(一) 本文(3万字) | 机器学习概述 |
小酒馆燃着灯
机器学习人工智能深度学习目标检测vscodepytorchpython
推荐阅读,点击查看文章目录1.统计学习(机器学习)1.1特点1.2对象1.3目的1.4方法1.5步骤2.基本分类2.1监督学习2.1.1输入空间、特征空间和输出空间2.1.2概率分布2.1.3假设空间2.1.4问题的形式化2.2无监督学习2.3强化学习2.4半监督学习与主动学习3.基于模型分类4.基于技巧分类4.1贝叶斯学习4.2核方法5.统计学习三要素5.1模型5.2策略5.2.1损失函数与风险
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文