HDU1086

You can Solve a Geometry Problem too

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8452    Accepted Submission(s): 4125


Problem Description
Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

Note:
You can assume that two segments would not intersect at more than one point.
 

 

Input
Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending.
A test case starting with 0 terminates the input and this test case is not to be processed.
 

 

Output
For each case, print the number of intersections, and one line one case.
 

 

Sample Input
2
0.00 0.00 1.00 1.00
0.00 1.00 1.00 0.00
3
0.00 0.00 1.00 1.00
0.00 1.00 1.00 0.000
0.00 0.00 1.00 0.00
0
 
Sample Output
1
3
 
 1 #include <iostream>

 2 #include <stdio.h>

 3 #include <string.h>

 4 #include <stack>

 5 #include <queue>

 6 #include <map>

 7 #include <set>

 8 #include <vector>

 9 #include <math.h>

10 #include <algorithm>

11 using namespace std;

12 const double pi = acos(-1.0);

13 const int INF = 0x3f3f3f3f;

14 

15 struct Line

16 {

17     double x1,y1,x2,y2;

18 }node[105];

19 

20 bool solve(Line a, Line b)//叉积判断两线段是否相交

21 {

22     if (((a.x1-b.x1)*(a.y2-b.y1)-(a.x2-b.x1)*(a.y1-b.y1))*((a.x1-b.x2)*(a.y2-b.y2)-(a.x2-b.x2)*(a.y1-b.y2))>0)

23     return false;

24     if (((b.x1-a.x1)*(b.y2-a.y1)-(b.x2-a.x1)*(b.y1-a.y1))*((b.x1-a.x2)*(b.y2-a.y2)-(b.x2-a.x2)*(b.y1-a.y2))>0)

25     return false;

26     return true;

27 }

28 

29 int main ()

30 {

31     int n;

32     while (scanf ("%d",&n),n)

33     {

34         for (int i=0; i<n; i++)

35         scanf ("%lf%lf%lf%lf",&node[i].x1,&node[i].y1,&node[i].x2,&node[i].y2);

36         int cnt = 0;

37         for (int i=0; i<n; i++)

38         {

39             for (int j=i+1; j<n; j++)

40             {

41                 if (solve(node[i], node[j]))

42                 cnt++;

43             }

44         }

45         printf ("%d\n",cnt);

46     }

47     return 0;

48 }
View Code

 

你可能感兴趣的:(HDU)