线性代数(六)| 二次型 标准型转换 正定二次型 正定矩阵

文章目录

  • 1. 二次型化为标准型
    • 1.1 正交变换法
    • 1.2 配方法
  • 2 . 正定二次型与正定矩阵

1. 二次型化为标准型

和第五章有什么样的联系

首先上一章我们说过对于对称矩阵,一定存在一个正交矩阵Q,使得$Q^{-1}AQ=B $ B为对角矩阵

那么这一章中,我们讲到,二次型写成矩阵后本质上就是一个对称矩阵,而我们想把它变的标准型,不就正好是一个对角矩阵,那么实际上我们的这个化标准型,本质上不就是矩阵对角化吗

但我们在上一章中是$Q^{-1}AQ=B $ 引入的 矩阵关系叫矩阵相似

而在这一章中是$Q^{T}AQ=B $ 引入的矩阵关系叫矩阵合同

有同学会很好奇,那这不是不一样嘛,而我们其实了解到,对于正交矩阵 Q − 1 = Q T Q^{-1}=Q^T Q1=QT ,也就不难理解他们是一样的了

1.1 正交变换法

(1)求矩阵特征值和特征向量

(2)特征向量正交化和单位化
在这里插入图片描述

线性代数(六)| 二次型 标准型转换 正定二次型 正定矩阵_第1张图片

线性代数(六)| 二次型 标准型转换 正定二次型 正定矩阵_第2张图片

线性代数(六)| 二次型 标准型转换 正定二次型 正定矩阵_第3张图片

1.2 配方法

一般用到比较少

2 . 正定二次型与正定矩阵

​ 等价关系

(1)二次型 X T A X X^TAX XTAX是>0的

(2)A是正定矩阵

(3)A的正惯性指数是n

(4)A合同于单位矩阵

(5)A的特征值都是正数

(6)A的顺序主子式都大于零

在这里插入图片描述

​ 可以写出二次型矩阵 ( 1 t 1 t 4 0 1 0 2 ) \begin{pmatrix}1&t&1\\t&4&0\\1&0&2\end{pmatrix} 1t1t40102 另它的行列式大于零即可

你可能感兴趣的:(数学科学,线性代数,矩阵)