[版本发布]OpenNCC百度定制版VCAM发布

近期,由百度美国研究院和EyeCloud共同研发的定制版OpenNCC开源AI摄像头VCAM正式上线GitHub, 感兴趣的朋友们可以在GitHub搜索hydra-vcam进行下载。

VCAM基于EyeCloud的OpenNCC开发,是百度Hydra AI项目的一款原型摄像头。

VCAM功能特点:

  • 即插即用:将USB-C数据接口插入计算机即可开始开发创建自己的多功能AI摄像头。

  • 标准模型:VCAM具有集成VPU芯片的优势,与百度Paddle和英特尔OpenVINO兼容。

  • 多框架:VCAM支持Paddle、Caffe、ONNX、TensorFlow、MXNet等深度学习框架,便于用户友好地开发和使用。

  • 高质量输出:VCAM已经过出厂视频调试,支持1920x1080或4K分辨率画质,支持YUV420、H.264、H265、MJPEG等视频格式输出。

  • 二次开发:VCAM提供专用SDK开发工具包和相关技术文档,支持C/C++/Python语言。用户可以轻松调用相关API接口,启动摄像机参数设置、模型下载、输出视频参数设置,快速启动智能摄像机算法部署。VCAM支持Paddle和OpenVINO提供的官方模型,也支持用户自定义的算法模型。

VCAM SDK支持的操作系统:

  • Ubuntu 16.04, Ubuntu 18.04
  • Windows 10
  • Raspberry Pi
  • Arm Linux (需要工具链交叉编译)

VCAM SDK支持的编程语言:

  • C/C++
  • Python3.5, Python3.7

VCAM 摄像头型号:

  • VCAM DK
  • VCAM Lite
  • VCAM USB

VCAM集成了的算法模型:

Model Category Name Brief Introduction
Object Classification classification-fp16 ssd_mobilenet_v1_coco model can detect almost 90 objects
Face & Human Detection face-detection-adas-0001-fp16 A face detector for driver monitoring and similar scenarios. The network features a default MobileNet backbone that includes depth-wise convolutions to reduce the amount of computation for the 3x3 convolution block
Face & Human Detection face-detection-retail-0004-fp16 A face detector based on SqueezeNet light (half-channels) as a backbone with a single SSD for indoor/outdoor scenes shot by a front-facing camera
Face & Human Detection face-person-detection-retail-0002-fp16 Pedestrian detector based on the backbone with hyper-feature + R-FCN for the Retail scenario
Face & Human Detection person-detection-retail-0013-fp16 Pedestrian detector for the Retail scenario. It is based on MobileNetV2-like backbone that includes depth-wise convolutions to reduce the amount of computation for the 3x3 convolution block
Face & Human Detection pedestrian-detection-adas-0002-fp16 Pedestrian detection network based on SSD framework with tuned MobileNet v1 as a feature extractor.
People, Vehicles & Bicycles Detection person-vehicle-bike-detection-crossroad-0078-fp16 Person/Vehicle/Bike detector is based on SSD detection architecture, RMNet backbone, and learnable image downscale block (like person-vehicle-bike-detection-crossroad-0066, but with extra pooling)
People, Vehicles & Bicycles Detection pedestrian-and-vehicle-detector-adas-0001-fp16 Pedestrian and vehicle detection network based on MobileNet v1.0 + SSD.
Vehicle Detection vehicle-detection-adas-0002-fp16 A vehicle detection network based on an SSD framework with tuned MobileNet v1 as a feature extractor.
Mask Detection mask-detect-fp16 Mask detector.
License Plate Recognition vehicle-license-plate-detection-barrier-0106-fp16 A MobileNetV2 + SSD-based vehicle and (Chinese) license plate detector for the “Barrier” use case.
Face Attributes interactive_face_detection_demo This demo executes four parallel infer requests for the Age/Gender Recognition, Head Pose Estimation, Emotions Recognition, and Facial Landmarks Detection networks that run simultaneously
Body Extraction human-pose-estimation-0001-fp16 A multi-person 2D pose estimation network (based on the OpenPose approach) with tuned MobileNet v1 as a feature extractor.

VCAM运行机制

从模型训练环境到嵌入式部署,这是一项非常重要的任务,开发者需要掌握深度学习的框架,如常用的:Caffe*、TensorFlow*、MXNet*、Kaldi*等;此外,掌握部署的嵌入式平台非常重要,开发者需要了解平台性能、系统架构特点,然后结合平台特点优化培训模型框架,最后对嵌入式平台进行调优、移植和部署。

VCAM专注于深度学习模型的快速部署,与Intel OpenVINO工具兼容,适用于嵌入式图形和图像应用场景。它已在终端目标设备上完成了从2MP到20MP的不同分辨率传感器的集成,并在终端目标设备实现了专业级ISP的部署。OpenVINO优化的转换模型文件可以动态下载到终端VCAM摄像机,以实现深度学习模型的快速部署。VCAM设计了独立工作模式、混合开发模式和协同处理计算模式,以适应不同的工作应用场景。

[版本发布]OpenNCC百度定制版VCAM发布_第1张图片

欢迎对VCAM感兴趣的朋友前往GitHub项目页了解更多项目细节,也欢迎添加OpenNCC小助手微信好友(搜eyecloud666)加入OpenNCC开发技术交流微信群和工程师们一起交流。

你可能感兴趣的:(版本发布,深度学习,计算机视觉,目标检测,人工智能,神经网络)