- 论文学习笔记 VMamba: Visual State Space Model
Wils0nEdwards
学习笔记
概览这篇论文的动机源于在计算机视觉领域设计计算高效的网络架构的持续需求。当前的视觉模型如卷积神经网络(CNNs)和视觉Transformer(ViTs)在处理大规模视觉任务时展现出良好的表现,但都存在各自的局限性。特别是,ViTs尽管在处理大规模数据上具有优势,但其自注意力机制的二次复杂度对高分辨率图像处理时的计算成本极高。因此,研究者希望通过引入新的架构来降低这种复杂度,并提高视觉任务的效率。现
- 论文学习1----理解深度学习需要重新思考泛化Understanding deep learning requires rethinking generalization
夏洛的网
机器学习深度学习论文深度学习神经网络
——论文地址:Understandingdeeplearningrequiresrethinkinggeneralization1、有关新闻1.1新闻一:参考1:机器之心尽管深度人工神经网络规模庞大,但它们的训练表现和测试表现之间可以表现出非常小的差异。传统的思考是将小的泛化误差要么归结为模型族的特性,要么就认为与训练过程中的正则化技术有关。通过广泛的系统性实验,我们表明这些传统的方法并不能解释大
- 半监督语义分割论文学习记录
西瓜真的很皮啊
半监督语义分割深度学习机器学习人工智能
Semi-SupervisedSemanticSegmentationwithCross-ConsistencyTraining1.1motivation一致性训练的目的是在应用于输入的小扰动上增强模型预测的不变性。因此,学习的模型将对这样的小变化具有鲁棒性。一致性训练的有效性在很大程度上取决于数据分布的行为,即集群假设,其中类必须由低密度区域分隔。在语义分割中,在输入中,我们没有观察到低密度区域
- 2019-1-27晨间日记
紫薇忘了水葫芦
在柳州的第二天起床:八点半左右天气:晴心情:好像很复杂,一会儿开心一会儿不开心纪念日:参加了晗大姐的婚礼任务清单昨日完成的任务,最重要的三件事:⒈把之前的论文题目整理了一遍⒉参加了婚礼⒊送了礼物改进:要静下来多看些书做些运动,多思考。习惯养成:早睡早起,饮食清淡周目标·完成进度开始读论文学习·信息·阅读阅读健康·饮食·锻炼饮食清淡,多锻炼人际·家人·朋友多联系工作·思考怎么把自己的工作做得更好最美
- 语义分割系列之FCN、DeeplabV1、V2、V3、V3Plus论文学习
Diros1g
学习深度学习计算机视觉
FCNFullyConvolutionalNetworks论文:FullyConvolutionalNetworksforSemanticSegmentation地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf特点:用全卷积替
- 论文学习笔记 POSEIDON: Privacy-Preserving Federated Neural Network Learning
JiangChSo
论文学习深度学习机器学习神经网络算法分布式
论文学习笔记POSEIDON:Privacy-PreservingFederatedNeuralNetworkLearningNDSS2021录用文章目录论文学习笔记POSEIDON:Privacy-PreservingFederatedNeuralNetworkLearning一、机器学习1.机器学习(ML)中的挑战2.隐私保护机器学习(PPML)二、POSEIDON方案1.系统和威胁模型2.方
- 论文学习——Vector Quantized Diffusion Model for Text-to-Image Synthesis
客院载论
音频生成学习
文章目录引言正文Abstract文章的核心VQ潜在空间适合文本转图片生成VQDiffusion的比起自回归和GAN的其他模型的成果IntroductionNLP的成功给图片生成的启发自回归模型的单向误差解释预测误差累积VQDiffusion能够解决预测误差累计和单向误差两个问题解决单向误差的方式——每一次预测都是考虑所有token的上下文信息解决错误累积的方式——使用基于掩码和替换的扩散策略模型测
- Python论文学习 -- 第二章 --- Python基础知识
Metallic Cat
学习
1.cmd命令器中如果想终止命令的话可以在终止行输入exit()函数调用停止命令一.字面量二.注释---对代码进行解释说明1.在print函数中:print(a,"asd",c)输出的结果为a变量对应的值+asd+c变量对应的值如:则输出的结果为:往type()函数中输入数据,它会返回数据的类型给我们,然后我们可以用print()函数将数据类型打出来1.值得注意的是变量本身是没有类型的,它只是一个
- 论文学习笔记:PoseFix: Model-agnostic General Human Pose Refinement Network
wangyc1208
姿态估计
论文:https://arxiv.org/abs/1812.03595代码:https://github.com/mks0601/PoseFix_RELEASE—————————————————————————————————————————————————目标:多人姿态估计:本篇论文主要工作是利用一个人体姿势优化网络,从输入图像和姿势中对人体姿态进行优化。大概的效果如下图:———————————
- 2021-9-23晨间日记
言二yaner
今天是什么日子起床:7:40就寝:23:00天气:美好心情:美好纪念日:无任务清单昨日完成的任务,最重要的三件事:投稿改进:想到就做到习惯养成:专注自己,提升自己周目标·完成进度准备再写一篇论文学习·信息·阅读多阅读,多学习健康·饮食·锻炼早饭:小米粥,鸡蛋,烧麦中饭:真味卤,杨枝甘露晚饭:黑米粥锻炼:一小时左右人际·家人·朋友一切都是最好的安排,虽然没有过去,但也有属于自己的收获工作·思考凡事早
- 论文学习记录之Deep-learning seismic full-waveform inversion for realistic structuralmodels
摘星星的屋顶
论文深度学习人工智能
一、ABSTRACT—摘要标题:Deep-learningseismicfull-waveforminversionforrealisticstructuralmodels(用于真实结构模型的深度学习地震全波形反演)作者:BinLiu1,SenlinYang2,YuxiaoRen2,XinjiXu3,PengJiang2,andYangkangChen4(和SeisInvNet有共同作者,应该是同
- 论文学习记录之SeisInvNet(Deep-Learning Inversion of Seismic Data)
摘星星的屋顶
论文人工智能
目录1INTRODUCTION—介绍2RELATEDWORKS—相关作品3METHODOLOGYANDIMPLEMENTATION—方法和执行3.1方法3.2执行4EXPERIMENTS—实验4.1数据集准备4.2实验设置4.3基线模型4.4定向比较4.5定量比较4.6机理研究5CONCLUSION—结论1INTRODUCTION—介绍地震勘探是根据地震波在大地中的传播规律来确定地下地层结构的一种
- 基于变长频带选择的JPEG图像可逆数据隐藏-文献学习
凌峰的博客
学习算法计算机视觉
论文学习原文题目:ReversibleDataHidingofJPEGImageBasedonAdaptiveFrequencyBandLength发表期刊:TCSVT2023(中科院1区)作者:NingxiongMao,HongjieHe,FanChen,YuanYuan,LingfengQu摘要JPEG图像在互联网上被广泛使用。基于quantifieddiscretecosinetransfo
- BASNet:Boundary-aware salient object detection
Kun Li
应用算法目标检测计算机视觉
CVPR2019开源论文|BASNet:关注边界的显著性检测本文提出一种基于深度监督学习的前景提取构架BASNet,其在边缘感知上有优异的表现。https://mp.weixin.qq.com/s/fjq4UyDMN9Z9lvNZ7aNLWABASNet:Boundary-AwareSalientObjectDetection论文学习_basnet:boundary-awaresalientobj
- Nerf-Wild神经辐射场论文学习笔记 Neural Radiance Fields for Unconstrained Photo Collections
出门吃三碗饭
Nerf学习记录三维重建学习笔记
前言:本文为记录自己在Nerf学习道路的一些笔记,包括对论文以及其代码的思考内容。公众号:AI知识物语B站后续同步更新讲解本篇文章主要针对其数学公式来学习其内容,欢迎批评指正!!!(代码下篇出)1:摘要提出基于学习(learning-based)方法,使用野外照片的非结构化集合(unstructuredcollectionsofin-the-wildphotographs)来合成复杂场景。之前的N
- GroupMixFormer:Advancing Vision Transformers with Group-Mix Attention论文学习笔记
athrunsunny
Transformer学习笔记深度学习计算机视觉transformer
论文地址:https://arxiv.org/pdf/2311.15157.pdf代码地址:https://github.com/AILab-CVC/GroupMixFormer摘要:ViT已被证明可以通过使用多头自注意力(MHSA)对远程依赖关系进行建模来增强视觉识别,这通常被表述为Query-Key-Value计算。但是,从“Query”和“Key”生成的注意力图仅捕获单个粒度的token-t
- 论文学习——基于查询的workload预测(CMU)
_zhj
机器学习数据库
一、简介论文题目:Query-basedWorkloadForecastingforSelf-DrivingDatabaseManagementSystems发表在2018SIGMOD,来自cmu的数据库组(这个组真的很厉害)这篇论文主要讲数据库workload预测的问题。因为要实现数据库self-driving(如选择合适的时机在合适的列上自动创建索引),应该根据将要到来的查询对数据库进行优化,
- 第六十八周周报
童、一
周报深度学习
学习目标:项目论文学习时间:2023.12.23-2023.12.29学习产出:一、项目这周后两天在根据吉安方面的需求优化SQL,提升性能二、论文这周周六在杨老师的带领下仔细改了论文前两段,后面几天自己把剩下的改完了,目前还在给杨老师看。实验方面,由于LSUN一直跑不出好的效果,已经转为STL10和CelebA,预计得下周才能出结果。其他时间都在搞开题报告的东西。
- DN-DETR论文学习
彭祥.
DETR系列学习深度学习计算机视觉
摘要本文提出了一种新颖的去噪训练方法,以加快DETR(DEtectionTRansformer)训练,并加深了对类DETR方法的慢收敛问题的理解。我们表明,缓慢收敛是由于二分图匹配的不稳定性导致早期训练阶段的优化目标不一致。为了解决这个问题,除了匈牙利损失之外,我们的方法还向Transformer解码器馈送了带有噪声的GT边界框,并训练模型重建原始框,从而有效地降低了二分图匹配难度,并加快了收敛速
- MS-DETR: Efficient DETR Training with Mixed Supervision论文学习笔记
athrunsunny
Transformer学习笔记transformer深度学习算法
论文地址:https://arxiv.org/pdf/2401.03989.pdf代码地址(中稿后开源):GitHub-Atten4Vis/MS-DETR:Theofficialimplementationfor"MS-DETR:EfficientDETRTrainingwithMixedSupervision"摘要DETR通过迭代生成多个基于图像特征的目标候选者,并为每个真实目标分配一个候选者,
- 经典论文学习:Attention Is All You Need(Transformer)
才能我浪费
AI应用深度学习机器学习人工智能
1,概述《AttentionIsAllYouNeed》是一篇由GoogleDeepMind团队在2017年发表的论文,该论文提出了一种新的神经网络模型,称为Transformer模型,用于自然语言处理任务。该模型的创新点在于使用了一种称为“自注意力机制(self-attentionmechanism)”的技术,以取代传统的循环神经网络(RNN)和卷积神经网络(CNN)等结构,这使得模型在处理序列数
- 2022-6-17晨间日记
七翎
今天是什么日子起床:7.30(因为今天考科四,好困啊!!!)就寝:科四成功考过,熬个小夜(嘻嘻)天气:昨天下雨了,今天超凉快!心情:开心更多一点纪念日:纪念我拿上驾照的日子任务清单昨日完成的任务,最重要的三件事:刷完10套科四卷子✔习惯养成:早睡早起(尽量吧)周目标·完成进度1.完成编程课程2.看完导师论文学习·信息·阅读看了网文(嘻嘻)放纵一下健康·饮食·锻炼吃了很多不健康的食物,但很快乐!人际
- ChatGPT可以帮你做什么?
SiKi学院
chatgpt人工智能
学习利用ChatGPT学习有很多,比如:语言学习、编程学习、论文学习拆解、推荐学习资源等,使用方法大同小异,这里以语言学习为例。在开始前先给GPT充分的信息:(举例)【角色】充当一名有丰富经验的英语老师【背景】我是一名英语雅思备考的学生,想进行英语相关学习(这里最好说明是帮助你做什么练习,如口语)【任务】你要和我进行对话,根据我输入的内容,去进行讲解和说明【要求】我希望你首先可以列举出雅思备
- 【论文学习】SOLVING INVERSE PROBLEMS IN MEDICAL IMAGING WITH SCORE-BASED GENERATIVE MODELS
Lyrig~
神经网络图像修复(ImageRestoration)学习机器学习算法
【论文学习】SOLVINGINVERSEPROBLEMSINMEDICALIMAGINGWITHSCORE-BASEDGENERATIVEMODELS前言相关概念线性逆问题基于分数的生成模型扰动过程逆过程采样利用基于分数的生成模型求解逆问题一种简便的线性测量过程形式将给定的观测结果融合进无条件采样过程前言好不容易写完了这么长的一篇,整体看来,这篇文章更像是对去噪过程的一个改进。通过在不同时间步引入
- 论文学习 使用基于NeRF的精炼特征从3D感知Diffusion模型下实现单视点下的人工重建
Lyrig~
学习3d人工智能
论文学习使用基于NeRF的精炼特征从3D感知Diffusion模型下实现单视点下的人工重建论文连接前言摘要介绍相关工作2.13D生成的扩散模型2.2单视点下的新视点生成神经场(NeRF)以外的方法基于神经场(NeRF)的方法背景3.1图片条件NeRF3.2无几何视图合成NerfDiff论文连接NerfDiff:Single-imageViewSynthesiswithNeRF-guidedDist
- 【论文学习】InstructGPT:Training language models to follow instructions with human feedback
Shackles Lay
学习语言模型自然语言处理
前言:语言模型的输出依赖于预训练的数据集,研究者想要探索无监督领域的模型,使其仅仅依赖无标签的数据就可以实现不错的效果,为了让模型的泛化性能尽可能的强,研究者会提供尽可能大的数据集。但这样的训练方法存在两个问题:一、有效性。模型的性能依赖于训练时使用的文本,但是研究者并不知道无标签的大批量的数据集是否可以使模型学习到解决指定任务的能力,可能对于特定领域来说,模型根本没见过这样的数据;二、安全性,模
- 畸变矫正-深度学习相关论文学习
六个核桃Lu
畸变矫正深度学习学习人工智能
目录DocTr:DocumentImageTransformerforGeometricUnwarpingandIlluminationCorrectionSimFIR:ASimpleFrameworkforFisheyeImageRectificationwithSelf-supervisedRepresentationLearningModel-FreeDistortionRectificat
- A Fast Learning Algorithm for Deep Belief Nets - 论文学习
Mr,yu
论文笔记论文笔记MachineLearningDeepLearning
文章目录摘要介绍互补先验一个带约束权的无限有向模型限制玻尔兹曼机和对比散度学习一种转换表示的贪婪学习算法SomeIdeasBasedonDBNNonlinearDimensionalityReductionLearningSemanticAddressSpace(SAS)forFastDocumentRetrievalLearningNonlinearEmbeddings参考文献摘要explain
- 周四 2020-03-12 07:15 - 24:00 晴 06h54m
么得感情的日更机器
概述 早上6点20被闹钟搞醒,关了接着睡,7:14醒听听力、背单词、学习强国,练字,8:00下楼吃饭,8:30上楼读口语、做日计划。上午从9:00开始锁机学习相应SLAM论文综述,中间锻炼五分钟,跳的我腿好疼。11:00-11:35,对论文学习内容进行总结,编写论文记录文档。下午13:00-14:30看动漫,14:30-16:20整理计算机基本知识的文档。晚上看着手机发呆,然后讨论论文的事情,总
- smpl-x论文学习-部分翻译
ipv-tao
图形学三维重构
论文地址:ExpressiveBodyCapture:3DHands,Face,andBodyfromaSingleImage知乎大佬的讲解:https://zhuanlan.zhihu.com/p/137235901另一位大佬的讲解:https://posts.careerengine.us/p/5f23a5898988c12b4302afb61.定性结果和SMPL,SMPL-H相比,表现能力明
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号