- Python3 【集合】项目实战:3 个新颖的学习案例
李智 - 重庆
Python精讲精练-从入门到实战python经验分享案例学习编程技巧
Python3【集合】项目实战:3个新颖的学习案例以下是3个应用“Python集合”知识的综合应用项目,这些项目具有新颖性、前瞻性和实用性,每个项目都包含完整的代码、解释说明、测试案例和执行结果。基因序列比对文章推荐系统运行日志分析项目1:基因序列比对(集合运算与去重)项目描述在生物信息学中,比对两个基因序列的相似性。使用集合的交集和并集计算相似度。代码实现#基因序列(简化为字符串集合)seque
- 使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测。
Jam-Young
scikit-learnpython信息可视化
使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测。#导入鸢尾花数据集fromsklearn.datasetsimportload_iris,fetch_20newsgroups#数据化可视包importseabornassnsimportmatplotlib.pyplotaspltimportpandasaspdfromsklearn.model_selectio
- python selenium清除缓存_python 解决selenium 中的 .clear()方法失效问题
许吴倩
pythonselenium清除缓存
最近在使用selenium做一个数字货币的自动化脚本时,遇到一个问题就是okex网站的input使用clear()方法居然无法清空,但是后来试了好多次发现方法是可以使用的,而且这个网站修改input的value也没用,必须在文本框里修改才行,本次的目的就是要清除输入框的默认值,然而clear()没有反应,最后还是用了别的方法解决了问题,那就是使用鼠标双击事件,全选后输入内容。fromseleniu
- MRP计划过程综述、MRP需求传递、净需求计算、MRP的时间逻辑等
saplakes
#SAP_PPSAPPPMRP物料需求计划生产计划
文章目录MRP计划过程综述MRP的运行方式分为几类MRP需求传递净需求的计算MRP时间推算原理MRP时间逻辑-排产MRP清单【SAP系统PP模块研究】本文对MRP运行过程中的一些基本概念,以尽量简洁平实的方式进行讲解,以增进对MRP概念的理解。MRP计划过程综述SAPMRP物料需求计划的前提是有需求,对于上层的成品,主要体现为销售订单、销售合同、销售计划协议等,另外一块就是计划独立需求,也就是预测
- AI常见的算法
纠结哥_Shrek
人工智能算法
人工智能(AI)中常见的算法分为多个领域,如机器学习、深度学习、强化学习、自然语言处理和计算机视觉等。以下是一些常见的算法及其用途:1.机器学习(MachineLearning)监督学习(SupervisedLearning)线性回归(LinearRegression):用于预测连续值,如房价预测。逻辑回归(LogisticRegression):用于分类问题,如垃圾邮件检测。支持向量机(SVM)
- 定价策略详解
小小搬运工40
定价数据分析产品运营数据挖掘
常用定价策略简述渗透定价:快速吸引客户,适用于新产品进入市场,但低价可能导致利润率低。撇脂定价:获取高额利润,适用于技术含量高的产品,但高价可能限制市场规模。心理定价:利用客户心理反应,增加购买意愿,但过度使用可能导致客户信任危机。分段定价:满足不同客户群体需求,适用于多层次服务,但需要精确的市场细分。会员定价:增强客户忠诚度,适用于订阅服务,但需确保会员权益的吸引力。捆绑定价:通过组合销售增加客
- AI技术赋能电商行业,引领变革
m0_74136676
人工智能
AI大模型在电商行业的应用正在不断拓展,其强大的数据处理和分析能力为电商平台带来了前所未有的创新机遇。一、购物推荐的创新应用AI大模型通过分析用户的浏览历史、购买记录、搜索关键词等大量数据,能够生成个性化的商品推荐。这种推荐系统比传统的基于规则或简单协同过滤的推荐更为精准。它利用深度学习技术,更准确地预测用户的兴趣点,使推荐内容更加贴切,从而提高用户点击率和购买转化率。例如,当用户在电商平台上搜索
- 网络安全-网络安全及其防护措施11
Jr_l
网络安全安全网络安全网络
51.网络容量规划网络容量规划的概念和重要性网络容量规划:是指根据业务需求和预期增长,合理规划和设计网络的带宽、设备和资源,以满足未来网络流量和服务质量的需求。通过有效的网络容量规划,确保网络性能稳定和用户体验良好,避免资源浪费和网络瓶颈。网络容量规划的关键因素业务需求预测:分析和预测业务增长趋势及数据流量变化,确定未来网络容量需求。带宽规划:根据业务需求和网络拓扑设计,规划合适的带宽和连接,确保
- 【计算机视觉】目标跟踪应用
油泼辣子多加
计算机视觉计算机视觉目标跟踪人工智能
一、简介目标跟踪是指根据目标物体在视频当前帧图像中的位置,估计其在下一帧图像中的位置。视频帧由t到t+1的检测,虽然也可以使用目标检测获取,但实际应用中往往是不可行的,原因如下:目标跟踪的目的是根据目标在当前视频帧图像中的位置,预测其在下一帧图像中的位置。然而,使用目标检测直接获取目标位置的方式在实际应用中存在一些限制,主要原因如下:1.实时性问题频繁检测开销大:目标检测通常需要对每一帧的整个图像
- Deepseek爆火背后的多Token技术预测
明哲AI
AIGC人工智能大模型RAG多token预测deepseek
近年来,大语言模型(LLMs)的发展如火如荼,它们在聊天机器人、文档生成、代码编写等领域大放异彩。然而,随着模型规模的增加,生成效率也成为了一大瓶颈。传统的自回归语言模型需要逐字生成(token-by-token),这种方式不仅耗时,还限制了模型在实时场景中的表现。那么,有没有一种方法可以加快生成速度,同时保持文本质量?答案是:多Token预测(Multi-TokenPrediction,MTP)
- 均方误差(MSE)揭秘:预测模型的“真面目”
星际编程喵
Python探索之旅pythondjangoflask算法数学建模
前言在这个充满数据的世界里,我们需要各种方式来衡量一个模型的表现,尤其在回归问题中,均方误差(MSE)是我们非常常见的“好朋友”。它就像一位忠诚的侦探,默默为我们揭示预测值与实际值之间的真相。今天,让我们一起进入均方误差的世界,看看它是如何用简单却有效的方式,帮助我们准确评估模型的预测能力。简介均方误差(MSE,MeanSquaredError)是衡量预测值与实际值之间差异的常见指标。在回归问题中
- AI时代的人类增强:道德考虑与身体增强的未来发展策略分析预测
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
人类增强、AI、道德、身体增强、未来发展策略、预测1.背景介绍人类文明自诞生以来,就一直在探索如何超越自身的局限性。从使用工具到发明火,从农业文明到工业革命,每一次进步都代表着人类对自身能力的提升。如今,人工智能(AI)的快速发展,为人类提供了前所未有的机会,让我们迈向一个全新的时代——AI时代的人类增强时代。AI时代的人类增强,是指通过人工智能技术,提升人类的认知能力、身体能力和生活质量。这不仅
- 使用iperf测试设备的网络吞吐量
吐泡泡的咸鱼
iperf测试工具tcp/ipwindows
iperf简介iperf是一个基于Client/Server的网络性能测试工具,可以测试TCP,UDP和SCTP带宽质量,能够提供网络吞吐量信息,以及震动、丢包率,最大段和最大传输单元通统计信息,帮助我们测试网络性能,定位网络瓶颈。iperf的好处是纯粹发包和接收,不会被硬盘、Flash等读写速度测试结果。iperf测试结果在一定程度上反应了路由器的网络性能。iperf3.exe–c192.168
- 深入解析:使用 Python 爬取二手车交易平台数据的全流程
Python爬虫项目
2025年爬虫实战项目python开发语言百度爬虫信息可视化
二手车交易平台提供了丰富的汽车交易数据,这些数据包含了车辆品牌、型号、价格、行驶里程、上牌时间等关键信息。这些数据对市场研究、价格预测、车辆性能分析等应用场景具有重要价值。本篇博客将带你深入学习如何用Python爬取二手车交易平台数据,提供详细的实现代码、突破反爬机制的技巧,以及数据清洗和分析的思路。一、二手车数据的价值与分析场景1.1数据价值二手车交易数据可以应用在以下场景:市场分析:了解当前二
- Baklib揭示内容中台与人工智能技术的创新协同效应
清风徐徐de来
其他
内容概要在当今信息爆炸的时代,内容的高效生产与分发已成为各行业竞争的关键。内容中台与人工智能技术的结合,为企业提供了一种新颖的解决方案,使得内容创造的流程更加智能化和高效化。内容中台作为信息流动的核心,能够集中管理和分发多元化的内容资源,为各类用户需求提供服务。同时,人工智能技术则在数据分析、用户行为预测、个性化推荐等方面展现出强大的能力。两者相辅相成,推动了在内容生产过程中的创新与发展。以下表格
- 机器学习:利用sklearn实现心脏病预测
薄化克Oswald
机器学习:利用sklearn实现心脏病预测机器学习sklearn实现心脏病预测项目地址:https://gitcode.com/Resource-Bundle-Collection/171ff欢迎使用本资源仓库,本项目专注于利用Python的sklearn库进行心脏病预测的机器学习实践。通过详尽的步骤和示例代码,本项目为你展示了如何应用不同的机器学习算法来分析心脏病数据集,并预测患者是否有可能患有
- python3调用arcpy地理加权回归_分析地理加权回归分析结果的操作方法
weixin_39545269
1从地理加权回归(GWR)工具生成的输出包括以下内容:输出要素类可选系数栅格表面整体模型结果的消息窗口报告显示模型变量和诊断结果的辅助表预测输出要素类2下文中将使用一系列运行GWR和解释GWR结果的步骤对以上每项输出进行说明。通常将以普通最小二乘法(OLS)开始回归分析。有关详细信息,请参阅回归分析基础知识和解释OLS回归结果。回归分析的一种常用方法是在移动到GWR之前识别可能的最佳OLS模型。此
- 数据挖掘常用算法模型简介
大乔乔布斯
数据挖掘线性回归决策树
以下是数据挖掘中常用的算法模型及其简称、英文全称和使用场景的简要介绍:1.决策树(DecisionTree,DT)常用算法:CART:ClassificationandRegressionTreeID3:IterativeDichotomiser3C4.5:基于ID3改进使用场景:分类问题(如信用风险评估、客户分类)回归问题(如预测房价)特点:易解释、适合处理非线性数据。2.随机森林(Random
- 小程序webview打开小程序原生页面_详解如何探测小程序返回到webview页面
weixin_39905624
在公司项目中经常会遇到一个场景,尝试过各种不同的方法,最后想到了一种很技术上简单且可行的方法.经常被QA同学反应同一类型的问题项目是小程序(wepy),部分页面使用webview(vue).经常会遇见一个场景:当小程序navigateTo到一些页面对用户的"收藏状态","身材细节"做了修改后,用户点击返回按钮回到上一个页面,收藏的状态或是身材细节没有改变.那是当然的,作为一个小程序中的webvie
- Tensorflow入门——训练结果的保存与加载
weixin_34087301
人工智能python数据库
2019独角兽企业重金招聘Python工程师标准>>>训练完成以后我们就可以直接使用训练好的模板进行预测了但是每次在预测之前都要进行训练,不是一个常规操作,毕竟有些复杂的模型需要训练好几天甚至更久所以将训练好的模型进行保存,当有需要的时候重新加载这个模型进行预测或者继续训练,这才是一个常规操作我们依然使用最简单的例子进行说明,这里沿用Tensorflow入门——实现最简单的线性回归模型的预测这个例
- Depth Anything V2:单目深度估计的更强基线
武朵欢Nerissa
DepthAnythingV2:单目深度估计的更强基线项目地址:https://gitcode.com/gh_mirrors/de/Depth-Anything-V2项目介绍DepthAnythingV2是由HKU与TikTok团队合作开发的单目深度估计算法的升级版本。这个框架显著提升了细节处理能力和鲁棒性,相比于基于深度学习的方法,它提供了更快的推理速度、更少的参数量以及更高的深度预测精度。本项
- 探索前端的未来:深度使用 SolidJS 构建高性能用户界面
桂月二二
前端ui
SolidJS是近年来前端开发领域的一颗新星,它结合了React的思维模式和Vue的性能优势,提供了一种高效且轻量的框架解决方案。本文将带你深入了解SolidJS的实际使用,并探索如何利用其核心特性构建现代化的高性能应用。为什么选择SolidJS?相比于其他框架,SolidJS有以下独特优势:超高性能:基于fine-grainedreactivity(细粒度反应性)机制,仅更新必要的DOM节点。零
- 观察者模式(Observer)
你一身傲骨怎能输
设计模式观察者模式windowsmicrosoft
观察者模式(ObserverPattern)是一种常用的设计模式,特别适用于需要实现发布-订阅机制的场景。在游戏开发中,事件系统是一个典型的应用案例,允许多个对象对特定事件做出反应。下面我们将详细探讨观察者模式的实现及其在游戏中的应用。观察者模式的基本结构观察者模式主要由以下几个角色组成:主题(Subject):被观察的对象,维护观察者的列表,并在状态变化时通知它们。观察者(Observer):对
- 创新药周报及靶点研发分析报告
魔都财观
本文还有配套的精品资源,点击获取简介:本报告深入探讨医药行业,提供最新创新药物研发动态,并分析全球和国内的医药趋势。报告关注靶点研发的关键性,详细介绍特定靶点如肿瘤抑制因子等的生物学功能和作为药物靶点的潜力,同时深入临床试验阶段的新药项目,讨论新药审批流程和政策环境。报告还涵盖行业投资和合作动态,预测未来市场趋势,为投资者和决策者提供宝贵的行业洞见。1.医药行业研发动态分析1.1行业背景概述医药行
- 终于明白什么是威胁情报
国安护卫
信息安全威胁情报
威胁情报初探什么是威胁情报,其实安全圈一直在使用着它们,漏洞库、指纹库、IP信誉库,它们都是威胁情报的一部分。情报就是线索,威胁情报就是为了还原已发生的攻击和预测未发生的攻击所需要的一切线索。“所谓的威胁情报就是帮助我们发现威胁,并进行处置的相应知识。这种知识就是我们所说的威胁情报”。威胁情报有啥用?互联网安全曾经历经了流氓互殴,侠客对决、黑社会火并等等阶段,现在已经形成了攻击者有组织有预谋,防御
- 强化学习很多ac架构的算法比如ppo,为什么使用状态价值网络而不使用动作价值网络实现critic呢?|状态价值网络的优势与挑战|Actor-Critic|状态价值|强化学习
concisedistinct
人工智能算法人工智能架构
目录1.强化学习的基础1.1策略与价值函数2.Actor-Critic架构概述2.1Critic的作用3.为什么选择状态价值网络?3.1训练稳定性3.2计算效率3.3高维动作空间的适应性4.使用状态价值网络的挑战4.1收敛速度4.2欠拟合风险5.解决方案与未来方向5.1改进的状态价值网络5.2结合动作价值和状态价值6.结论随着强化学习技术的不断发展,其在诸如游戏、机器人控制和金融预测等领域的应用越
- 瀑布式开发、快速原型开发、迭代式开发、螺旋式开发、敏捷式开发、DevOps开发的简介与对比
晓北斗NorSnow
多媒体考试devops运维
以下是项目管理中常见的软件开发模式:瀑布式开发、快速原型开发、迭代式开发、螺旋式开发、敏捷式开发、DevOps开发的简介与对比表格:开发模式简介优点缺点适用场景瀑布式开发最早提出的系统化、结构化的开发方法,将软件开发过程划分为一系列顺序进行的阶段。1.顺序性强,便于管理和控制;2.文档齐全,有利于后期维护和升级;3.结构化可预测,便于计划和资源分配。1.缺乏灵活性,难以应对需求变化;2.早期缺陷检
- RAG技术架构深度解析(非常详细)零基础入门到精通,收藏这一篇就够了
Python_chichi
程序员互联网大模型架构人工智能机器学习语音识别
本文主要介绍了RAG技术架构在AI编程中的创新应用及其面临的挑战。文章深入分析了RAG技术架构的兼容性、实时性和智能化水平等方面的问题,并提出了相应的改进措施,如加强标准化建设、引入实时数据处理技术和先进算法模型。同时,文章预测了RAG技术架构在智能化水平持续提升、跨领域融合加速以及数据隐私与安全保障方面的未来发展趋势。最后,文章回顾了RAG技术在AI编程领域的应用成果,并展望了其广阔的应用前景,
- 调整oracle服务器时间,那些年Oracle数据库主机时间调整的风花雪月
环球旅行船长
调整oracle服务器时间
最近工作中又遇到因时间问题导致的故障,这让本新四有好青年想起了N年前的一个案例,今天整理分享一下。当时是应用反应主机时间与正确的时间相差有8分多钟,影响了正常的业务,登录发现主机的NTP服务是开启的,查看NTP同步状态:可以看到offset是0.051s,基本没有延迟,那么问题就出在Ntpserver时间存在不准确的可能,通过主机侧查看,果然server端存在延迟的情况。为尽快恢复业务,通过以下方
- 大话特征工程:2.特征组合与描述
nnerddboy
白话机器学习机器人
公元2147年,人类文明站在科技的巅峰,所有决策、发展甚至感知都被“全维计算网络”所掌控。这套系统以高维空间中的数据为基础,试图预测并塑造未来。然而,这场辉煌的技术革命却在悄无声息之间酿成了人类最大的危机——维数灾难。系统的高维特征空间本应为复杂世界提供精确的洞察,但却因维度的无限膨胀开始背离现实。全球天气失控、医疗系统陷入混乱、社会资源分配崩溃,这些技术上的崩坏正在逐步渗透进人类的感知之中。建筑
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found