- EgoAlpha/prompt-in-context-learning项目解析:Prompt Engineering核心技术指南
霍日江Eagle-Eyed
EgoAlpha/prompt-in-context-learning项目解析:PromptEngineering核心技术指南prompt-in-context-learningAwesomeresourcesforin-contextlearningandpromptengineering:MasteryoftheLLMssuchasChatGPT,GPT-3,andFlanT5,withup-
- MiniMind:3小时训练26MB微型语言模型,开源项目助力AI初学者快速入门
nine是个工程师
关注人工智能语言模型开源
开发|界面|引擎|交付|副驾——重写全栈法则:AI原生的倍速造应用流来自全栈程序员nine的探索与实践,持续迭代中。欢迎关注评论私信交流~在大型语言模型(LLaMA、GPT等)日益流行的今天,一个名为MiniMind的开源项目正在AI学习圈内引起广泛关注。这个项目让初学者能够在3小时内从零开始训练出一个仅26.88MB大小的微型语言模型,体积仅为GPT-3的七千分之一,却完整覆盖了从数据处理到模型
- 「论文导读」LLM高效推理与模型量化
雷羿 LexChien
prompt人工智能LLM论文阅读
1.论文背景作者:HugoTouvron等人,來自MetaAI来源:arXiv:2302.13971,2023年2月主题:介绍LLaMA系列模型(LLaMA-7B、13B、33B、65B),专为研究用途设计,强调高效能与低资源需求的语言模型推理。论文探讨如何通过优化训练数据、模型架构和推理技术,在有限硬体资源(如单一GPU或CPU)上实现高效推理。学术背景:随着大型语言模型(LLM)如GPT-3的
- 【人工智能】Maas(模型即服务)(Model as a Service)是一种基于云计算的商业模式,通过API将预训练的人工智能模型作为服务提供给用户,使其无需自行管理底层基础设施即可调用AI能力。
本本本添哥
A-AIGC人工智能大模型人工智能云计算
ModelasaService(模型即服务,MaaS)是一种基于云计算的商业模式,通过API将预训练的人工智能模型作为服务提供给用户,使其无需自行管理底层基础设施即可调用AI能力。MaaS通过云原生架构和标准化服务,正在重塑AI技术的开发和消费方式,推动人工智能从“技术专有”向“普惠工具”转变。以下是其核心要点:1.定义与核心理念MaaS将大模型(如GPT-3、多模态模型等)封装为标准化服务,用户
- 大语言模型原理基础与前沿 基于语言反馈进行微调
AI天才研究院
计算AI大模型企业级应用开发实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿基于语言反馈进行微调作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习技术的飞速发展,自然语言处理(NLP)领域取得了显著的进展。大语言模型(LargeLanguageModels,LLMs)如GPT-3、BERT等在各项NLP任务上取得了令人瞩目的成绩。然而,如何进一步提高大语言模型的理
- 四种微调技术详解:SFT 监督微调、LoRA 微调、P-tuning v2、Freeze 监督微调方法
当谈到人工智能大语言模型的微调技术时,我们进入了一个令人兴奋的领域。这些大型预训练模型,如GPT-3、BERT和T5,拥有卓越的自然语言处理能力,但要使它们在特定任务上表现出色,就需要进行微调,以使其适应特定的数据和任务需求。在这篇文章中,我们将深入探讨四种不同的人工智能大语言模型微调技术:SFT监督微调、LoRA微调方法、P-tuningv2微调方法和Freeze监督微调方法。第一部分:SFT监
- 基于Google Gemini 探索大语言模型在医学领域应用评估和前景
知来者逆
LLM语言模型搜索引擎人工智能Gemini大语言模型医疗健康医疗
概述近年来,大规模语言模型(LLM)在理解和生成人类语言方面取得了显著的飞跃,这些进步不仅推动了语言学和计算机编程的发展,还为多个领域带来了创新的突破。特别是模型如GPT-3和PaLM,它们通过吸收海量文本数据,已经能够掌握复杂的语言模式。人工智能技术的迅猛发展不断推动着LLM的进化,并加速了这一领域的专业创新。这些进步是随着模型规模的扩大、数据量的增加以及计算能力的提升而逐步实现的,其中许多尖端
- LoRA微调详解:如何为AIGC模型节省90%显存
SuperAGI2025
AI大模型应用开发宝典AIGCai
LoRA微调详解:如何为AIGC模型节省90%显存关键词:LoRA、低秩适应、AIGC模型、参数高效微调、显存优化摘要:在AIGC(人工智能生成内容)领域,大模型(如GPT-3、LLaMA、StableDiffusion)的微调需要消耗海量显存,普通用户或企业难以负担。本文将深入解析LoRA(Low-RankAdaptation,低秩适应)这一参数高效微调技术,通过生活类比、数学原理、代码实战和应
- 《论文阅读》GPT-3是否会产生移情对话?一种新的情境示例选择方法和用于生成同理心对话的自动评估度量 ICCL 2022
365JHWZGo
情感对话论文阅读gpt-3共情回复上下文学习提示学习大模型
《论文阅读》GPT-3是否会产生移情对话?一种新的情境示例选择方法和用于生成同理心对话的自动评估度量ICCL2022前言贡献PromptIn-contextlearningSITSMEMOSITSM新的自动指标实验前言亲身阅读感受分享,细节画图解释,再也不用担心看不懂论文啦~无抄袭,无复制,纯手工敲击键盘~今天为大家带来的是《DoesGPT-3GenerateEmpatheticDialogues
- 【LangChain编程:从入门到实践】AI 大模型检索增强生成 RAG 实践
AI智能应用
Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LangChain编程:从入门到实践-AI大模型检索增强生成RAG实践关键词:LangChain,RAG,大语言模型,检索增强生成,向量数据库,嵌入模型,提示工程1.背景介绍在人工智能和自然语言处理领域,大语言模型(LargeLanguageModels,LLMs)的出现无疑是一个重大突破。像GPT-3、GPT-4这样的模型展现出了惊人的语言理解和生成能力,为各种应用场景带来了无限可能。然而,这些
- 大模型系列——提示词工程:从原理、实践到未来的一部系统性综述
猫猫姐
大模型人工智能大模型提示词
提示词工程:从原理、实践到未来的一部系统性综述摘要本文系统性地阐述了提示词工程(PromptEngineering)这一关键领域,它作为释放大语言模型(LLM)潜能的核心人机交互范式。报告从LLM的“下一个词预测”基本机制出发,追溯了提示词工程从GPT-3时代“上下文学习”的偶然发现到当前系统化、工程化的演进历程。本文深度剖析了多种高级提示框架,包括旨在激发模型逐步推理的“思维链”(Chain-o
- 【AI大模型】26、算力受限下的模型工程:从LoRA到弹性智能系统的优化实践
无心水
AI大模型人工智能搜索引擎LoRA大语言模型微调模型压缩知识蒸馏量化技术
引言:算力瓶颈与模型工程的突围之路在人工智能领域,大语言模型的发展正呈现出参数规模爆炸式增长的趋势。从GPT-3的1750亿参数到PaLM的5400亿参数,模型能力的提升往往伴随着对算力资源的极度渴求。然而,对于大多数企业和研究者而言,动辄数百GB的显存需求、数十万块GPU的训练集群显然是难以企及的"算力鸿沟"。当面对"无米之炊"的困境时,模型工程技术成为突破算力瓶颈的核心路径——通过算法创新而非
- 【大模型学习 | LORA 原理及实现】
九年义务漏网鲨鱼
语言模型pythonpytorch自然语言处理
LORA:LOW-RANKADAPTATIONOFLARGELAN-GUAGEMODELSGithub库:GitHub-microsoft/LoRA:Codeforloralib,animplementationof“LoRA:Low-RankAdaptationofLargeLanguageModels”GPT-3:175B微调模型变得十分的贵。作者提出利用Low-RankAdaption来冻结
- ⼤模型(LLMs)基础⾯
cv2016_DL
LLM大模型计算机视觉人工智能llama
1.⽬前主流的开源模型体系有哪些?⽬前主流的开源LLM(语⾔模型)模型体系包括以下⼏个:1.GPT(GenerativePre-trainedTransformer)系列:由OpenAI发布的⼀系列基于Transformer架构的语⾔模型,包括GPT、GPT-2、GPT-3等。GPT模型通过在⼤规模⽆标签⽂本上进⾏预训练,然后在特定任务上进⾏微调,具有很强的⽣成能⼒和语⾔理解能⼒。2.BERT(B
- 二、大模型的能力(DataWhale大模型理论基础)
Y_fulture
大模型理论基础(DW组队学习)人工智能gpt-3nlp
大模型的能力一、概述本节主要是通过对GPT-3论文中的基准测试深入研究,从而获得关于GPT-3更深程度的认识我们应该知道,GPT-3的结果参差不齐:在某些任务上,比如语言建模,GPT-3大幅度超越了现有技术的最高水平;在其他任务上,GPT-3与训练有素,拥有大量标签数据的系统竞争时,却明显落后。造成上述现象的原因:GPT-3并未明确针对这些任务进行训练,它只是作为一个语言模型,被训练来预测下一个词
- 大语言模型:人工智能的“大脑革命“与未来图景
RockLiu@805
大模型实战人工智能语言模型自然语言处理
大语言模型:人工智能的"大脑革命"与未来图景——从GPT-3到AGI的演进之路引言:算力觉醒的时代2022年11月,ChatGPT的横空出世犹如一记惊雷,仅用5天时间就突破百万用户,两个月后月活用户突破1亿。这个现象级应用背后,是参数量高达1750亿的GPT-3.5大模型在支撑。这场由大语言模型(LargeLanguageModels,LLMs)引发的AI革命,正在重塑人类社会的认知边界。当我们与
- DeepSpeed 深度学习学习笔记:高效训练大型模型
主要参考官网文档,对于具体内容还需参考官方文档1.引言:为什么需要DeepSpeed?大型模型训练的挑战随着深度学习模型规模的爆炸式增长(从BERT的几亿参数到GPT-3的千亿参数,再到现在的万亿参数模型),传统的单GPU训练方式变得力不从心,即使是多GPU训练也面临巨大挑战:内存限制(MemoryWall):模型参数:模型的参数量巨大,例如一个1750亿参数的GPT-3模型,即使使用FP16精度
- LoRA、QLoRA是什么
爱吃土豆的马铃薯ㅤㅤㅤㅤㅤㅤㅤㅤㅤ
人工智能机器学习深度学习
一:LoRA(Low-RankAdaptation,低秩适应)是一种高效的大模型参数微调技术,由Meta在2021年提出。它通过冻结预训练模型参数,仅训练少量新增的低秩矩阵,大幅减少了需要训练的参数量,同时保持接近全参数微调的效果。为什么需要LoRA?传统的全参数微调(Fine-tuning)需要更新大型语言模型的所有参数(如GPT-3有1750亿参数),这带来两个核心问题:计算资源需求极高:需要
- 深入探讨:如何使用OutputFixingParser修复LLM输出的解析错误并确保数据结构的完整性
m0_57781768
数据结构
深入探讨:如何使用OutputFixingParser修复LLM输出的解析错误并确保数据结构的完整性在当今的自然语言处理(NLP)领域,大型语言模型(LLM)如GPT-3等,已成为解决复杂问题的重要工具。这些模型能够生成自然语言文本,用于回答问题、生成内容或进行对话。然而,在将这些生成的文本转换为结构化数据格式(如JSON或Pydantic模型实例)时,可能会遇到解析错误。尤其是在文本格式不正确或
- AI 在创新创业比赛的 10 大应用:从创意激发到成果转化
大明者省
人工智能
1.创意灵感生成:基于大数据的创新点挖掘AI通过分析行业动态、市场痛点及前沿技术趋势,结合自然语言处理和生成式模型,为参赛者提供创新灵感。例如,利用GPT-3等语言模型,输入行业关键词,快速生成潜在的创业方向和产品概念。importopenai#设置OpenAIAPI密钥openai.api_key="your_api_key"defgenerate_innovation_ideas(keywor
- 【AI大模型】15、从GPT-1到GPT-3:大语言模型核心技术演进与能力涌现全解析
一、GPT-1:预训练微调范式的奠基者(2018)(一)架构创新:单向Transformer解码器的诞生GPT-1首次将Transformer架构应用于语言模型领域,其核心采用12层Transformer解码器,摒弃了传统RNN的递归结构,通过自注意力机制实现并行计算。与Encoder-Decoder架构不同,GPT-1仅使用解码器部分,每个解码器层包含:多头自注意力模块:8个头,每个头维度64,
- 从零开始掌握OpenAI的GPT-3 API:基础指南与实战示例
stjklkjhgffxw
gpt-3python
#从零开始掌握OpenAI的GPT-3API:基础指南与实战示例##引言在人工智能领域,OpenAI的GPT-3无疑是近年来最令人瞩目的技术突破之一。无论是用于生成自然语言文本、编写代码,还是提供智能对话服务,GPT-3都展示了其强大的能力。本篇文章旨在帮助初学者从零开始掌握GPT-3的API使用,了解其核心原理,并通过实战示例加深理解。##主要内容###1.什么是GPT-3?GPT-3(Gene
- 大模型全景解析:从技术突破到行业变革
敲键盘的小夜猫
大语言模型语言模型
目录一、引言:人工智能的新纪元二、大模型发展历史与技术演进1.早期探索期(2015-2017):从"人工智障"到初具规模RNN/LSTM架构时代(2013-2017)Transformer革命(2017)2.预训练模型崛起(2018-2020):范式转变BERT模型(2018)GPT系列初期(2018-2019)3.千亿参数时代(2020-2022):规模效应凸显GPT-3(2020):规模带来质
- AI大模型创业:如何实现未来盈利?
AI智能应用
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
AI大模型,创业,盈利模式,商业应用,技术趋势,市场分析,案例研究1.背景介绍近年来,人工智能(AI)技术取得了飞速发展,特别是大规模语言模型(LLM)的出现,如GPT-3、LaMDA等,展现出强大的文本生成、理解和翻译能力,为各行各业带来了革命性的变革。随着AI技术的不断进步,越来越多的创业者看到了AI大模型的巨大商业潜力,纷纷涌入这个领域。然而,仅仅拥有先进的AI技术还不够,如何将AI大模型转
- 大语言模型应用指南:效果评估
AI天才研究院
AI大模型企业级应用开发实战AIAgent应用开发大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
大语言模型应用指南:效果评估作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着人工智能技术的飞速发展,大语言模型(LargeLanguageModels,LLMs)如GPT-3、LaMDA等在自然语言处理领域取得了显著的成果。这些模型能够生成高质量的文本、翻译文本、回答问题等,为各行各业带来了巨大的变革。然而,在实际应用
- Langchain学习笔记(六):Langchain框架介绍与环境搭建
zhangsan0933
LangChainlangchain学习笔记
注:本文是Langchain框架的学习笔记;不是教程!不是教程!内容可能有所疏漏,欢迎交流指正。后续将持续更新学习笔记,分享我的学习心得和实践经验。1.Langchain的产生背景与解决的问题Langchain是一个为大语言模型(LLM)应用开发而设计的框架,它诞生于2022年底,正是大语言模型迅速发展的时期。其产生背景主要有以下几个方面:1.1大模型应用开发的复杂性随着GPT-3、GPT-4等大
- 还有哪些其他的基于transformer架构模型?
墨染辉
人工智能transformer深度学习人工智能
当然可以!让我们详细介绍一下基于Transformer架构的其他模型。除了您提到的GPT系列(如GPT-3、GPT-4)之外,还有许多其他类型的Transformer模型,每种模型在设计和应用上都有其独特的特点。我们将按架构类型(Decoder-Only、Encoder-Only、Encoder-Decoder)分类介绍这些模型,并简要说明它们的用途和特点。1.Decoder-Only语言模型De
- 自然语言处理NLP星空智能对话机器人系列:深入理解Transformer自然语言处理 Training a GPT-2 language model
段智华
NLP星空智能对话机器人transformer自然语言处理GPT
自然语言处理NLP星空智能对话机器人系列:深入理解Transformer自然语言处理TrainingaGPT-2languagemodel目录GPT模型简介TrainingaGPT-2languagemodelStep1:Prerequisites星空智能对话机器人系列博客GPT模型简介生成式预训练转换器(GPT)是由OpenAI团队构建的一系列基于深度学习的语言模型。GPT-3是一个预先训练过的
- LoRA:大模型高效微调的低秩之道——原理解析与技术实现
摘取一颗天上星️
人工智能pythonllama矩阵线性代数
LoRA:大模型高效微调的低秩之道——原理解析与技术实现大型语言模型(LLMs)的全参数微调如同驾驶油轮转弯——资源消耗巨大且响应迟缓。LoRA(Low-RankAdaptation)的提出,让模型微调变得像快艇般灵活高效。本文将深入解析LoRA的核心思想与数学原理。一、问题背景:大模型微调之痛当GPT-3(1750亿参数)需要微调时:显存需求:>1TB(存储优化器状态+梯度)硬件成本:单次实验费
- 《PyTorch Hub:解锁深度学习模型的百宝箱》
空云风语
人工智能深度学习神经网络深度学习pytorch人工智能
走进PyTorchHub在当今的深度学习领域,模型的复用和共享已成为推动技术飞速发展的关键力量。随着深度学习在计算机视觉、自然语言处理、语音识别等众多领域取得突破性进展,研究人员和开发者们不断探索更高效、更强大的模型架构。然而,从头开始训练一个深度学习模型往往需要耗费大量的时间、计算资源和数据。据统计,训练一个像GPT-3这样的大规模语言模型,可能需要数千块GPU芯片并行计算数月之久,成本高达数百
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$