- 大规模语言模型从理论到实践 开源指令数据集
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践开源指令数据集1.背景介绍大规模语言模型(LargeLanguageModels,LLMs)近年来在自然语言处理(NLP)领域取得了显著的进展。诸如GPT-3、BERT等模型在各种任务中表现出色,从文本生成到翻译,再到问答系统,几乎无所不能。这些模型的成功离不开庞大的训练数据集和复杂的算法架构。然而,如何有效地构建和利用开源指令数据集,仍然是一个值得深入探讨的话题。2.核
- 大语言模型原理与工程实践:大语言模型强化对齐
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:大语言模型强化对齐作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着人工智能技术的迅猛发展,大语言模型(LargeLanguageModels,LLMs)如GPT-3、LaMDA等,在自然语言处理(NLP)领域取得了显著的突破。这些模型在问答、翻译、文本生成等方面展现出惊人的能力,但同时也引发了
- 必看!一文读懂知识蒸馏技术
小天才学习机打游戏
人工智能知识图谱神经网络langchainwindows
导读最近,DeepSeek的爆火让大家对人工智能领域的技术发展又有了新的关注。而知识蒸馏作为深度学习中一项重要的技术,也在背后默默地发挥着作用,今天就来给大家详细介绍一下知识蒸馏及其相关原理。1.知识蒸馏是什么在深度学习领域,大型模型(如DeepSeek)通常具有强大的性能,但它们的计算量和参数量都非常庞大,这使得它们难以在资源受限的设备(如移动设备或嵌入式设备)上部署。例如,GPT-3在570G
- (大模型微调大模型学习路线大模型入门)_大模型 学习,吹爆!2025最详细的大模型学习路线已整理!手把手带你高效入门,大模型论文全打通!
大模型老炮
学习人工智能大模型学习AI大模型大模型微调大模型教程
一、初聊大模型1、什么是大模型?大模型,通常指的是在人工智能领域中的大型预训练模型。你可以把它们想象成非常聪明的大脑,这些大脑通过阅读大量的文本、图片、声音等信息,学习到了世界的知识。这些大脑(模型)非常大,有的甚至有几千亿个参数,这些参数就像是大脑中的神经元,它们通过复杂的计算来理解和生成语言、图片等。举个例子,你可能听说过GPT-3,它就是一个非常著名的大模型。GPT-3可以通过理解你提出的问
- 数据标注工具及其对预训练模型性能的影响
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1预训练模型的崛起近年来,预训练模型(Pre-trainedModels)在自然语言处理(NLP)领域取得了显著的成功。这些模型通过在大规模无标注文本数据集上进行预训练,学习到丰富的语言知识和语义表示,并在下游任务中展现出优异的性能。BERT、GPT-3等预训练模型的出现,标志着NLP领域进入了一个新的时代。1.2数据标注的重要性尽管预训练模型展现出强大的能力,但它们仍然需要针对特
- AI大模型推理加速:技术与实践详解
AI大模型学习者
人工智能
近年来,AI大模型在自然语言处理、计算机视觉等领域取得了突破性进展。然而,大模型的推理速度却成为其落地应用的瓶颈。本文将详细探讨AI大模型推理加速的技术手段和实践经验,并结合具体案例进行分析。一、挑战与机遇1.1挑战庞大的参数量:大模型通常拥有数十亿甚至数千亿个参数,例如GPT-3拥有1750亿个参数。如此庞大的参数量导致模型文件体积巨大,加载和推理都需要消耗大量的内存和计算资源。复杂的计算图:大
- 大模型(DeepSeek等)是否会动摇AI工程师的工作?
点我头像干啥
Ai深度学习人工智能AI编程计算机视觉
引言近年来,人工智能(AI)领域取得了突飞猛进的发展,尤其是大模型(如GPT-3、BERT、DeepSeek等)的出现,极大地推动了自然语言处理(NLP)、计算机视觉(CV)等领域的进步。大模型凭借其强大的泛化能力和广泛的应用场景,逐渐成为AI领域的核心技术之一。然而,随着大模型的普及,一个备受关注的问题浮出水面:大模型是否会动摇AI工程师的工作?本文将从多个角度探讨这一问题,分析大模型对AI工程
- 大模型面试--大模型(LLMs)基础面
TAICHIFEI
大模型面试语言模型人工智能
大模型(LLMs)基础面1.目前主流的开源模型体系有哪些?目前主流的开源大模型体系有以下几种:1.Transformer系列Transformer模型是深度学习中的一类重要模型,尤其在自然语言处理(NLP)领域。以下是一些主流的Transformer模型:GPT系列GPT-2和GPT-3:由OpenAI开发的生成式预训练变换器模型,用于生成高质量的文本。GPT-Neo和GPT-J:由Eleuthe
- 大语言模型原理基础与前沿 双层路由多模态融合、多任务学习和模块化架构
AI智能涌现深度研究
AI大语言模型和知识图谱融合Python入门实战DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿:双层路由多模态融合、多任务学习和模块化架构关键词:大语言模型、双层路由、多模态融合、多任务学习、模块化架构、神经网络、自然语言处理1.背景介绍大语言模型(LargeLanguageModels,LLMs)已经成为人工智能和自然语言处理领域的重要研究方向。随着GPT-3、BERT等模型的出现,大语言模型在各种任务中展现出了惊人的性能。然而,随着模型规模的不断扩大和应用场景的
- 领域大模型之微调技术和最佳实践
程序员莫玛
人工智能深度学习语言模型金融
BERT和GPT-3等语言模型针对语言任务进行了预训练。微调使它们适应特定领域,如营销、医疗保健、金融。在本指南中,您将了解LLM架构、微调过程以及如何为NLP任务微调自己的预训练模型。-介绍-大型语言模型(LLM)的特别之处可以概括为两个关键词——大型和通用。“大”是指它们训练的海量数据集及其参数的大小,即模型在训练过程中学习的记忆和知识;“通用”意味着他们具有广泛的语言任务能力。更明确地说,L
- 目前市场上的人工智能大模型有哪些?
国货崛起
大模型人工智能人工智能
截至最后更新时间(2024年3月中旬),以下是国内外部分知名的人工智能大模型,按类别和用途大致分类如下:国外:自然语言处理(NLP)大模型:OpenAIGPT系列:GPT-3:迄今为止最为知名的自然语言处理大模型之一,具备强大的文本生成、理解和对话能力。GPT-4:后续版本,性能和参数量比GPT-3更高,各项指标均有所提升。Google的Transformer系列:BERT(Bidirection
- 【精华推荐】AI大模型学习必逛的十大顶级网站
大模型入门学习
人工智能学习大模型入门llama大模型教程大模型学习大模型
随着人工智能技术的快速发展,AI大模型(如GPT-3、BERT等)在自然语言处理、计算机视觉等领域取得了显著的成果。对于希望深入学习AI大模型的开发者和研究者来说,找到合适的学习资源至关重要。本文将为大家推荐十大必备网站,帮助你更好地理解和应用AI大模型。1.CourseraCoursera是一个在线学习平台,提供各类AI和机器学习课程,包括斯坦福大学的机器学习课程和深度学习专项课程。通过视频讲解
- AI大模型知识图谱和学习路线!
hhaiming_
人工智能知识图谱学习
23年AI大模型技术狂飙一年后,24年AI大模型的应用已经在爆发,因此掌握好AI大模型的应用开发技术就变成如此重要,那么如何才能更好地掌握呢?一份AI大模型详细的知识图谱和学习路线就变得非常重要!一、大模型全套的学习路线学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳
- 自然语言处理NLP入门 -- 第八节OpenAI GPT 在 NLP 任务中的应用
山海青风
人工智能gpt自然语言处理python
在前面的学习中,我们已经了解了如何使用一些经典的方法和模型来处理自然语言任务,如文本分类、命名实体识别等。但当我们需要更强的语言生成能力时,往往会求助于更先进的预训练语言模型。OpenAI旗下的GPT系列模型(如GPT-3、GPT-3.5、GPT-4等)在生成文本方面拥有强大的表现。它们不仅能进行语言生成,也可用于诸多NLP任务,包括文本摘要和情感分析。本章将重点介绍:GPT的文本生成原理和应用场
- 【大模型】大模型分类
IT古董
人工智能人工智能大模型
大模型(LargeModels)通常指参数量巨大、计算能力强大的机器学习模型,尤其在自然语言处理(NLP)、计算机视觉(CV)等领域表现突出。以下是大模型的常见分类方式:1.按应用领域分类自然语言处理(NLP)模型如GPT-3、BERT、T5等,主要用于文本生成、翻译、问答等任务。计算机视觉(CV)模型如ResNet、EfficientNet、VisionTransformer(ViT)等,用于图
- 使用 Weaviate 执行 RAG (Retriever-Augmented Generation)
bavDHAUO
python
RAG(Retriever-AugmentedGeneration)是当前AI领域中频繁使用的技术,结合了信息检索与生成模型,可以大幅提升信息获取与生成内容的准确性和丰富度。本文将通过Weaviate数据库和OpenAI模型结合,展示如何实现在实际项目中的应用。技术背景介绍RAG技术结合了检索式模型(例如Weaviate)和生成式模型(例如OpenAI的GPT-3),能够在大量数据中快速找到相关信
- 在 Ubuntu 22.04 上搭建 Dify 应用的完整指南
jdfklaakjsdf
AIGCubuntulinux运维
Dify是一款开源的AI应用开发平台,支持快速构建基于大语言模型(如GPT-3、ChatGLM等)的应用。本教程将详细演示如何在Ubuntu22.04系统上部署Dify。一、环境准备1.系统要求Ubuntu22.04LTS最低配置:2核CPU/4GB内存/20GB硬盘推荐配置:4核CPU/8GB内存/40GB硬盘2.更新系统sudoaptupdate&&sudoaptupgrade-ysudoap
- 微调 LLM (RLHF + DPO)
人工智能
微调LLM(RLHF+DPO)使用强化学习(RL)根据人类反馈微调大语言模型(即RLHF)的方法,以及一种更有效的改进方法(即DPO)。一、GPT-3与InstructGPT2020年,OpenAI发布了GPT-3,这是一种大型语言模型(LLM),只需查看几个示例即可执行任意自然语言处理(NLP)任务。这包括为模型编写巧妙的输入(即提示),使其执行所需的任务(例如翻译、问答和完形填空任务)。尽管G
- RAG技术全面解析:从原理到实践中的20个关键问题
大F的智能小课
大模型理论和实战人工智能深度学习算法语言模型
一、基础概念与原理1.RAG是什么?与传统生成模型的区别是什么?RAG定义检索增强生成(Retrieval-AugmentedGeneration,RAG)是一种结合检索技术与生成模型的技术。其核心流程是:用户提问后,系统从外部知识库(如文档、数据库)中检索相关文档片段;将检索结果作为上下文输入大语言模型(LLM);LLM基于上下文生成最终答案。与传统生成模型的对比维度传统生成模型(如GPT-3)
- GPT-2源码实现及GPT-3、GPT-3.5、GPT-4及GPT-5内幕解析(二)
段智华
深入理解ChatGPTChatGPT国内OpenAIGPT-3GPT-4
GPT-2源码实现及GPT-3、GPT-3.5、GPT-4及GPT-5内幕解析(二)Gavin大咖微信:NLP_Matrix_Space5.2GPT-2源码实现逐行解析本节讲解GPT-2源码,gpt2.py是一个使用NumPy实现的代码,在代码中实现了GELU激活函数、softmax函数、层归一化、线性层、前馈神经网络、多头自注意力机制、Transformer块、GPT2模型以及文本生成函数,通过
- 用人类反馈微调大模型,InstructGPT 让 GPT-3 脱胎换骨
人工智能
用人类反馈微调大模型,InstructGPT让GPT-3脱胎换骨本文展示了一种通过利用人类反馈进行微调,使大语言模型在广泛任务中契合用户意图的方法。我们从一组标注员编写的提示以及通过OpenAIAPI提交的提示开始,收集了一个数据集,其中包含标注员展示的期望模型行为,利用这些数据通过监督学习对GPT-3进行微调。接着,我们收集模型输出的排名数据集,使用人类反馈强化学习对这个经过监督学习训练的模型进
- DeepSeek混合精度训练核心技术解析与实践指南
燃灯工作室
Deepseek数据挖掘语音识别计算机视觉目标检测机器学习人工智能
1.主题背景1.1Why混合精度训练(价值)混合精度训练通过结合FP16和FP32数据格式,在保证模型精度的前提下实现:40-60%显存占用降低(ResNet50案例:从7.8GB降至4.2GB)1.5-3倍训练速度提升(BERT-Large案例:从8h缩短至5h)突破大模型训练显存瓶颈(GPT-3训练显存需求从3TB降至1.8TB)1.2行业定位属于深度学习基础设施层的训练优化技术,处于模型开发
- 【大模型】数据集构造方式
油泼辣子多加
深度学习人工智能chatgpt
1.Alpaca数据格式Alpaca数据格式最早由StanfordAlpaca项目提出,目的是用来微调大语言模型(LLM),特别是用于InstructionTuning(指令微调)。它基于Self-Instruct方法,即使用更强大的模型(如OpenAI的GPT-3)来自动生成高质量的指令数据,从而让小型模型也能理解和执行指令任务。数据格式示例Alpaca数据集的格式通常是JSON,包含以下几个字
- AI 大模型创业:如何利用市场优势?
SuperAGI2025
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI大模型创业:如何利用市场优势?1.背景介绍随着人工智能技术的不断发展,大模型(LargeModels)在商业化应用中日益受到关注。大模型是指在特定领域中应用广泛、参数量巨大的神经网络模型,如BERT、GPT-3、DALL-E等。这些大模型通过在大规模数据集上进行预训练,具备强大的泛化能力和适应性,能够广泛应用于自然语言处理(NLP)、计算机视觉(CV)、生成对抗网络(GAN)等多个领域。然而,
- 大语言模型原理基础与前沿 通过稀疏MoE扩展视觉语言模型
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿通过稀疏MoE扩展视觉语言模型1.背景介绍在人工智能领域,语言模型和视觉模型的结合已经成为一个重要的研究方向。大语言模型(LargeLanguageModels,LLMs)如GPT-3、BERT等,已经在自然语言处理(NLP)任务中取得了显著的成果。而视觉语言模型(Vision-LanguageModels,VLMs)则通过结合视觉和语言信息,进一步提升了模型在多模态任务中
- DeepSeek-MoE-16b:高效稀疏架构引领大模型降本增效革命
热爱分享的博士僧
架构
一、模型定位与技术背景DeepSeek-MoE-16b是深度求索(DeepSeek)研发的混合专家模型(MixtureofExperts,MoE),参数规模160亿,旨在通过稀疏化计算架构解决传统稠密模型(如Llama2、GPT-3)的高训练与推理成本问题。其设计理念为“高效激活,精准分配”,在保持模型性能的同时,显著降低算力需求,推动大模型普惠化部署。二、核心技术架构动态专家路由机制模型包含12
- 大模型Dense、MoE 与 Hybrid-MoE 架构的比较
灵机️
人工智能深度学习架构人工智能
在大模型架构设计中,Dense(全连接)、MoE(混合专家)和Hybrid-MoE(混合式MoE)是三种主流的参数组织方式,它们在模型容量、计算效率和应用场景上存在显著差异。以下从核心原理、技术特点、优缺点及适用场景进行系统对比:1.核心原理对比架构类型核心思想典型模型Dense所有参数对所有输入生效,每层神经元全连接,统一处理所有输入特征。GPT-3、BERT、LLAMAMoE将模型划分为多个“
- 彻底颠覆!DeepSeek-R1横空出世,直接碾压OpenAI!
盼达思文体科创
经验分享
引言家人们,最近科技圈可太炸了!在人工智能领域,一直以来OpenAI就像一个超级霸主,凭借着强大的技术和广泛的应用,占据着全球人工智能市场的重要地位。它的GPT系列产品,从GPT-3到GPT-4Turbo,每一次更新都能引起全球的关注,无论是内容创作、智能客服还是科学研究,OpenAI的技术都发挥着重要作用。然而,就在大家都以为OpenAI会一直“独孤求败”的时候,中国的DeepSeek-R1突然
- Mixture of Experts(MoE)学习笔记
南七小僧
人工智能网站开发医疗器械研发学习笔记人工智能MoE大模型
1学习动机第一次了解到MoE(Mixtureofexperts),是在GPT-4模型架构泄漏事件,听说GPT-4的架构是8个GPT-3级别大小的模型以MoE架构(8*220B)组合成一个万亿参数级别的模型。不过在这之后开源社区并没有对MoE架构进行很多的探索,更多的工作还是聚焦在预训练新的大模型,在Llama2或其他模型上做Fine-tune,以及扩展大模型的ContextLength。12月8号
- 基于深度学习的大规模模型训练
SEU-WYL
深度学习dnn深度学习人工智能dnn
基于深度学习的大规模模型训练涉及训练具有数百万甚至数十亿参数的深度神经网络,以处理复杂的任务,如自然语言处理、计算机视觉和语音识别。以下是关于基于深度学习的大规模模型训练的详细介绍:1.背景和动机数据和模型规模增长:随着数据量和模型复杂度的增加,传统的单机或小规模集群训练难以满足需求。计算资源需求:大规模模型训练需要大量计算资源和存储,单一设备无法满足。任务复杂性:处理复杂任务(如GPT-3、BE
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$