直方图均衡化实现

一 直方图均衡化的概念

直方图均衡化(Histogram Equalization)是一种**增强图像对比度**(Image Contrast)的方法,其主要思想是将一副图像的**灰度直方图分布**通过**累积分布函数**变成**近似均匀分布**(直观上在某个灰阶范围内像素值保持一致 ),从而增强图像的对比度。为了将原图像的亮度范围进行扩展, 需要一个映射函数, 将原图像的像素值均衡映射到新直方图中。

问题1:为什么选择累计分布函数?

均衡化过程中,必须要保证两个条件:①像素无论怎么映射,一定要保证原来的大小关系不变,较亮的区域,依旧是较亮的,较暗依旧暗,只是对比度增大,绝对不能明暗颠倒;②如果是8位图像,那么像素映射函数的值域应在0和255之间的,不能越界。综合以上两个条件,累积分布函数是个好的选择,因为累积分布函数是单调增函数(控制大小关系),并且值域是0到1(控制越界问题),所以直方图均衡化中使用的是累积分布函数。

问题2:为什么使用累积分布函数处理后像素值会均匀分布?

对于概率分布函数和累积分布函数,前者的二维图像的灰度直方图是参差不齐的,后者因为人眼视觉系统(HVS),会将小范围内的像素值认为是同一个像素值,即在某个灰阶范围内像素值保持一致,故后者的二维图像的灰度直方图呈现均匀分布;

二 直方图均衡化的原理

假设图像中像素的总数是 N,图像的灰度级数是 L,灰度级空间是[0, L-1],用_表示第 k 级灰度(第 k 个灰度级,像素值为 k)在图像内的像素点个数,那么该图像中灰度级为_(第 k 个灰度级)出现的概率为:

image

根据灰度级概率,对其进行均衡化处理的计算公式为:

image

式中,k∑j=0Pr(rj)表示累计概率,将该值与灰度级的最大值L−1相乘即得到均衡化后的新灰度级(像素值)式中,∑�=0���(��)表示累计概率,将该值与灰度级的最大值�−1相乘即得到均衡化后的新灰度级(像素值)

三 直方图均衡化的求解过程

求解步骤:

  1. 求输入图像的灰度直方图
  2. 对灰度直方图进行归一化,即概率直方图
  3. 求累计概率直方图(累计分布函数),记作 Trans
  4. 通过 均衡化原理 将 源输入图像的像素值 映射到 均衡化后的图像像素值中去

参考链接:直方图均衡化的原理及实现_直方图均衡化原理-CSDN博客,注:求出Trans后,将图像映射到8位位图(0~255),是 Trans * 255

直方图均衡化实现_第1张图片

四 直方图均衡化的代码及结果分析

核心代码:

def histCalc(img):
    """
    灰度直方图统计
    :param img: 灰度图
    :return: 直方图
    """
    hist = np.zeros(256)
    rows = img.shape[0]
    cols = img.shape[1]
    for i in range(rows):
        for j in range(cols):
            tmp = img[i][j]
            hist[tmp] = hist[tmp] + 1
    print(hist.shape)
    return hist

def histEqualize(img):
    """
    直方图均衡化
    :param img: 灰度图
    :return: 均衡化的图像
    """
    hist = histCalc(img)
    imgH, imgW = img.shape[0], img.shape[1]
    allPixel = imgH * imgW

    # 计算累计分布函数(变换函数)
    trans = hist / allPixel * 255
    for i in range(1, len(trans)):
        trans[i] = trans[i] + trans[i-1]

    # 均衡化后的图像
    imageEqualize = img.copy()
    for i in range(imgH):
        for j in range(imgW):
            imageEqualize[i][j] = trans[img[i][j]]

    return imageEqualize

运行结果:

直方图均衡化实现_第2张图片

你可能感兴趣的:(计算机视觉,人工智能,图像处理)