- 01计算机视觉学习计划
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉系统学习计划(3-6个月)本计划按照数学→编程→图像处理→机器学习→深度学习→3D视觉→项目实战的顺序,确保从基础到高级,结合理论和实践。第一阶段(第1-2个月):基础夯实✅目标:掌握数学基础、Python/C++编程、基本图像处理1️⃣数学基础(2周)每日2小时线性代数:矩阵运算、特征值分解(推荐《线性代数及其应用》)概率统计:高斯分布、贝叶斯定理微积分:偏导数、梯度下降傅里叶变换:图
- 特斯拉FSD系统:自动驾驶的未来
百态老人
人工智能笔记
FSD系统概述FSD(FullSelf-Driving)系统是特斯拉研发的一套高级自动驾驶技术,旨在实现车辆在各种道路和驾驶场景下的完全自动驾驶。FSD系统通过集成先进的计算机视觉、深度学习、传感器融合等技术,利用车辆上安装的多种传感器和先进的计算机视觉技术,实现对周围环境的感知和理解。特斯拉通过不断收集和分析实际道路数据,持续优化其自动驾驶算法,使得FSD技术的安全性和可靠性得到了大幅提升.FS
- 特斯拉FSD不同版本的进化
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
特斯拉,FSD,自动驾驶,深度学习,计算机视觉,强化学习,神经网络,模型训练1.背景介绍特斯拉自2016年推出Autopilot以来,一直致力于开发全自动驾驶系统,其目标是实现完全无人驾驶,让汽车能够像人类一样感知周围环境,做出安全可靠的驾驶决策。FSD(FullSelf-Driving)是特斯拉自动驾驶系统的最高级别,它旨在实现车辆在任何道路和环境条件下都能安全自主驾驶的能力。FSD的开发是一个
- 使用 Dlib 库进行人脸检测和人脸识别
萧鼎
python基础到进阶教程计算机视觉人工智能python人脸识别人脸检测
使用Dlib库进行人脸检测和人脸识别什么是Dlib?Dlib是一个广泛使用的C++库,提供了多种用于机器学习和计算机视觉的工具。它包含了人脸检测、人脸识别、物体检测、图像处理等功能。Dlib具有高效、易用的Python接口,因此它也被广泛应用于Python中进行深度学习和计算机视觉任务。安装Dlib首先,我们需要在Python环境中安装Dlib库。你可以通过pip进行安装:pipinstalldl
- 介绍常见的图片分类模型与算法
萧鼎
python基础到进阶教程算法分类数据挖掘
介绍常见的图片分类模型与算法在机器学习和深度学习的领域中,图片分类任务是一个广泛的应用场景。随着深度学习技术的飞速发展,很多强大的图像分类算法和模型已经被提出,广泛应用于从医疗影像到自动驾驶、从人脸识别到图像检索等多个领域。本文将重点介绍多种用于图像分类的经典算法与模型,帮助你了解在图像分类任务中常用的技术。1.传统机器学习模型在深度学习崭露头角之前,传统的机器学习模型是图像分类的主流方法。这些模
- 如何通过卷积神经网络(CNN)有效地提取图像的局部特征,并在CIFAR-10数据集上实现高精度的分类?
浪九天
人工智能理论python后端深度学习神经网络人工智能机器学习pytorch
目录1.CNN提取图像局部特征的原理2.在CIFAR-10数据集上实现高精度分类的步骤2.1数据准备2.2构建CNN模型2.3定义损失函数和优化器2.4训练模型2.5测试模型3.提高分类精度的技巧卷积神经网络(ConvolutionalNeuralNetwork,CNN)是专门为处理具有网格结构数据(如图像)而设计的深度学习模型,能够有效地提取图像的局部特征。下面将详细介绍如何通过CNN提取图像局
- 一文读懂!OpenCV 实时人脸识别从 0 到 1,小白也能轻松实操的超详细教程(完整教程及源码)
AI_DL_CODE
opencv人工智能计算机视觉人脸识别
摘要:本文围绕使用OpenCV实现实时人脸识别展开。从环境搭建入手,详细介绍Python及相关库的安装。数据准备环节涵盖收集、标注及预处理步骤。深入阐述特征提取、模型训练方法,包含传统与深度学习方式,还介绍OpenCV预训练模型的使用与评估。详细讲解实时识别过程,包括打开摄像头、逐帧处理及结果显示优化。针对复杂场景,提出光照、姿态、遮挡等问题的解决办法及模型更新维护策略。通过丰富代码示例与解释,助
- 弹性算力革命:企业级GPU云服务如何重构AI与图形处理的效能边界
企业级GPU云服务是一种面向企业用户,基于云计算技术,将强大的图形处理器(GPU)资源以服务的形式提供给企业的创新模式。通过这种模式,企业无需自行购置、安装和维护昂贵的GPU硬件设备,只需按需从云端获取GPU计算资源,就能满足自身多样化的业务需求。随着人工智能、大数据、深度学习、虚拟现实以及高性能计算等前沿技术在各行业的深入渗透,企业对于大规模并行计算能力的要求越来越高。GPU凭借其卓越的并行计算
- 弹性算力革命:企业级GPU云服务如何重构AI与图形处理的效能边界
企业级GPU云服务是一种面向企业用户,基于云计算技术,将强大的图形处理器(GPU)资源以服务的形式提供给企业的创新模式。通过这种模式,企业无需自行购置、安装和维护昂贵的GPU硬件设备,只需按需从云端获取GPU计算资源,就能满足自身多样化的业务需求。随着人工智能、大数据、深度学习、虚拟现实以及高性能计算等前沿技术在各行业的深入渗透,企业对于大规模并行计算能力的要求越来越高。GPU凭借其卓越的并行计算
- 深度学习主流经典框架PyTorch(day2)
inquisitor.dom
深度学习pytorch人工智能
五、Tensor数据转换5.1张量转numpy浅拷贝调用numpy()方法可以把Tensor转换为Numpy,此时内存是共享的。#张量转numpydata_tensor=torch.tensor([[1,2,3],[4,5,6]])data_numpy=data_tensor.numpy()print(type(data_tensor),type(data_numpy))#他们内存是共享的data
- 【AI学习从零至壹】pytorch基础
flyyyya
AI算法人工智能学习pytorch
pytorch基础pytorch基础张量(Tensor)张量的属性张量的索引和切⽚:张量的拼接张量的算数运算单元素张量In-place操作与numpy之间的转换张量到numpy数组计算图静态计算图动态计算图pytorch计算图可视化pytorch基础PyTorch是⼀个开源的深度学习框架,由Facebook的⼈⼯智能研究团队开发和维护,在学术界和⼯业界都得到了⼴泛应⽤。张量(Tensor)张量(T
- MOE(Mixture of Experts,混合专家)
ZhangJiQun&MXP
教学2021论文人工智能深度学习语言模型机器学习
目录MOE(MixtureofExperts,混合专家)一、MOE架构的核心概念二、MOE架构的工作原理三、MOE架构的优势四、MOE架构的举例五、MOE架构的应用场景MOE(MixtureofExperts,混合专家)架构是一种用于提高深度学习模型性能和效率的神经网络架构设计。以下是对MOE架构的详细解释及举例:一、MOE架构的核心概念专家(Experts):在MOE架构中,专家指的是一组独立的
- 深度学习 -- 逻辑回归 PyTorch实现逻辑回归
冲鸭嘟嘟可
深度学习逻辑回归python人工智能
前言线性回归解决的是回归问题,而逻辑回归解决的是分类问题,这两种问题的区别是前者的目标属性是连续的数值类型,而后者的目标属性是离散的标称类型。可以将逻辑回归视为神经网络的一个神经元,因此学习逻辑回归能帮助理解神经网络的工作原理。什么是逻辑回归?逻辑回归是一种广义的线性回归分析模型,是监督学习的一种重要方法,主要用于二分类问题,但也可以用于多分类问题。逻辑回归的主要思想是,对于一个二分类问题,先根据
- 深度学习的数学之魂:传统机器学习的超越者
洋葱蚯蚓
机器学习深度学习机器学习人工智能经验分享个人开发数据挖掘
深度学习的数学之魂:传统机器学习的超越者前言第一部分:神经元的数学语言1.1神经元模型的启示1.2激活函数的非线性魔法第二部分:网络结构的层次之美2.1网络结构的多样性2.2层次结构的力量第三部分:图像的力量与直观理解3.1图表与动图的辅助作用3.2直观理解的桥梁第四部分:深度与专业的对话4.1深度学习与传统机器学习的比较4.2专业性强的技术分析第五部分:数学原理的深度剖析5.1神经网络的数学表达
- 机器学习与深度学习里生成模型和判别模型的理解
程序员羊羊
机器学习深度学习人工智能php学习chatgpt前端
两个模型是啥我们从几句话进入这两个概念:1、机器学习分为有监督的机器学习和无监督的机器学习;2、有监督的机器学习就是已知训练集数据的类别情况来训练分类器,无监督的机器学习就是不知道训练集的类别情况来训练分类器;3、所以说,有监督的机器学习可以抽象为一个分类task,而无监督的基本完成的是聚类;4、有监督的机器学习中,我们可以概述为通过很多有标记的数据,训练出一个模型,然后利用这个,对输入的X进行预
- 计算机视觉 vs 机器视觉 | 机器学习 vs 深度学习:核心差异与行业启示
程序员Linc
计算机视觉计算机视觉机器学习深度学习机器视觉
一、计算机视觉(CV)与机器视觉(MV):从学术研究到工业落地的分水岭1.定义与目标差异计算机视觉(CV)目标是赋予计算机类似人类的视觉理解能力,通过算法对图像或视频中的目标进行识别、跟踪和语义理解。其核心是研究如何从二维图像反推三维世界的结构和规律。例如,自动驾驶中通过多摄像头融合实现道路场景理解,属于典型的CV任务。机器视觉(MV)聚焦于工业场景的自动化检测与控制,强调实时性和精准性。MV系统
- 蚂蚁集团可转正实习算法岗内推-自然语言
飞300
业界资讯自然语言处理
具备极佳的工程实现能力,精通C/C++、Java、Pvthon、Perl等至少一门语言:对目前主流的深度学习平台:tensorflow、pytorch、mxnet等,至少对其中一个有上手经验;熟悉深度学习以及常见机器学习算法的原理与算法,能熟练运用聚类、分类、回归、排序等模型解决有挑战性的问题,有大数据处理的实战经验;有强烈求知欲,对人工智能领域相关技术有热情,内推链接:https://u.ali
- 深圳传音控股AI算法岗内推
飞300
人工智能pythonjava业界资讯
1扎实的数学基础,熟练掌握机器学习相关的数学知识。2熟悉常用的机器学习算法,掌握常用的深度学习模型与编程实践。3熟悉Pytorch或TensorFlow等深度学习框架,有一定项目经验。4良好的沟通协调能力,执着的专业精神。5参与部门AI创新项目,包括自动化测试平台、BPM流程管理等项目开发登录链接:transsion.zhiye.com/campus/jobs填写我的推荐码:EVHPB3投递,简历
- 【北上广深杭大厂AI算法面试题】深度学习篇...MobileNet 系列网络发展与高效性分析(附代码)(二)
努力毕业的小土博^_^
AI算法题库人工智能算法深度学习卷积神经网络
【北上广深杭大厂AI算法面试题】深度学习篇…MobileNet系列网络发展与高效性分析(附代码)(二)【北上广深杭大厂AI算法面试题】深度学习篇…MobileNet系列网络发展与高效性分析(附代码)(二)文章目录【北上广深杭大厂AI算法面试题】深度学习篇...MobileNet系列网络发展与高效性分析(附代码)(二)MobileNet系列网络发展与高效性分析(附代码)4.MobileNetV2(2
- Docker中GPU的使用指南
俞兆鹏
云原生实践docker容器运维
在当今的计算领域,GPU(图形处理单元)已经成为了加速各种计算密集型任务的关键硬件,特别是在深度学习、科学模拟和高性能计算等领域。Docker作为流行的容器化平台,允许开发者将应用程序及其依赖打包成一个可移植的容器,在不同的环境中运行。当需要在Docker容器中利用GPU的计算能力时,我们需要进行一些特定的配置和设置。本文将详细介绍如何在Docker中使用GPU,从环境准备到实际应用,帮助你充分利
- 【学习笔记5】Linux下cuda、cudnn、pytorch版本对应关系
longii11
linuxpytorch运维
一、cuda和cudnnNVIDIACUDAToolkit(CUDA)为创建高性能GPU加速应用程序提供了一个开发环境。借助CUDA工具包,您可以在GPU加速的嵌入式系统、桌面工作站、企业数据中心、基于云的平台和HPC超级计算机上开发、优化和部署您的应用程序。该工具包包括GPU加速库、调试和优化工具、C/C++编译器以及用于部署应用程序的运行时库。全球的深度学习研究人员和框架开发人员都依赖cuDN
- LLM辅助编程:代码自动生成与优化
AI智能涌现深度研究
计算机软件编程原理与应用实践DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
LLM,代码生成,代码优化,编程辅助,AI编程,自然语言处理,深度学习1.背景介绍随着软件开发的日益复杂化,程序员面临着越来越高的开发压力和效率要求。传统的编程方式依赖于手动编写代码,这不仅耗时费力,而且容易出现错误。近年来,随着深度学习技术的快速发展,基于大型语言模型(LLM)的代码生成和优化技术逐渐成为软件开发领域的新兴热点。LLM是一种强大的人工智能模型,能够理解和生成人类语言。通过训练大量
- 国内开源深度学习框架
we19a0sen
深度学习人工智能
目录一、国内开源深度学习框架1、PaddlePaddle(百度飞浆)2、MindSpore(华为昇思)3、MegEngine(旷视天元)4、OneFlow(一流科技)5、Jittor(清华计图)二、快速入手1、PaddlePaddle(百度飞浆)2、MindSpore(华为昇思)3、MegEngine(旷视天元)4、OneFlow(一流科技)5、Jittor(清华计图)三、基础教程1、Paddle
- 【免费收藏】清华大学DeepSeek使用手册合集 600页完整版
周师姐
AI写作学习人工智能pdf
DeepSeek资料链接:https://pan.quark.cn/s/c927326f70c5在人工智能席卷全球的当下,DeepSeek作为前沿深度学习技术,正推动着全面AI时代的到来。今日,特别为大家推荐《DeepSeek:从入门到精通》,本书由清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后团队精心编写。它深度解析DeepSeek的技术核心,详尽阐释其应用场景与操作方法,尤
- YOLOv12改进之A2(区域注意力)
清风AI
深度学习算法详解及代码复现深度学习机器学习计算机视觉人工智能算法
注意力回顾注意力机制作为深度学习领域的核心技术,已广泛应用于自然语言处理和计算机视觉等多个领域。在YOLOv12改进之A2中,注意力机制扮演着关键角色。已有研究成果包括:Transformer架构:引入了自注意力机制,有效捕捉输入序列中的长距离依赖关系。CBAM模块:提出了通道和空间注意力的结合,显著提升了图像分类和目标检测的性能。SENet:引入了通道注意力机制,通过自适应学习特征通道的重要性,
- Grok 3能否打破大模型的魔咒?
TGITCIC
AI-大模型的落地之道grokgrok3大模型小模型scalinglaw开源大模型
新模型旧魔咒Grok3的问世,仿佛是科技界的一声惊雷。面对老掉牙的大模型法则,大家不禁要问:这到底意味着什么?以前,一提深度学习就能引出一场血雨腥风,现如今却有人说“没钱也能玩”。这风浪可真是一波未平一波又起。也许这就是科技的魅力:一统江湖的法则瞬间瓦解。缩小与提升大模型不再是唯一的解决方案,大家发现,原来小模型也可以撬动市场。不过,面对如何提升模型的智商,各路英雄却依然不得不面对两个选择:大力度
- 深度学习_第二轮
Humingway
深度学习深度学习人工智能
损失函数对偏置和权重求导,x、y作为常量确实,当进行模型训练时,(x)和(y)分别代表输入特征和对应的输出值,它们以数据点对的形式存在,一个数据集中通常包含多对这样的数据。每一对((x_i),(y_i))代表了数据集中的一个样本。在计算损失函数的梯度(即关于权重的偏导数)时,需要考虑整个数据集中的所有样本。对于每个样本((x_i),(y_i)),我们计算其对损失函数的贡献,并通过求和或平均这些贡献
- 对深度学习中的基本概念—梯度的理解
Humingway
深度学习深度学习人工智能
本文讨论一下对“梯度”的理解。“梯度”是深度学习中基本又非常核心的概念,没有它就没有人工智能的今天。然而,即使抛开令人眼花缭乱的术语(比如sgd、ada、moment、adam)不谈,即使最简单的“梯度”本身,也值得讨论一下。1.提出问题该如何理解梯度?让我们结合具体的例子来体会一下。2.定义例子首先,我们定义一个简单的例子,来模拟一下深度学习的学习过程。已知:有一个正确的数据对(或者叫样本),(
- 《基于WebGPU的下一代科学可视化——告别WebGL性能桎梏》
Eqwaak00
matplotlibwebgl微服务架构云原生分布式
引言:科学可视化的算力革命当WebGL在2011年首次亮相时,它开启了浏览器端3D渲染的新纪元。然而面对当今十亿级粒子模拟、实时物理仿真和深度学习可视化需求,WebGL的架构瓶颈日益凸显。WebGPU作为下一代Web图形标准,通过显存直存、多线程渲染和计算着色器三大革新,将科学可视化性能提升至10倍以上。本文将深入解析如何利用WebGPU突破大规模数据渲染的极限。一、WebGPU核心架构解析1.1
- 自动驾驶---Perception之大模型应用
智能汽车人
自动驾驶人工智能机器学习
1背景自动驾驶感知(Perception)模块在自动驾驶系统中扮演着至关重要的角色,它负责收集、处理并理解车辆周围的环境信息。随着深度学习技术的快速发展,大模型也逐渐在自动驾驶感知模块中得到了广泛应用。本篇博客主要介绍大模型在感知模块的应用。前面也介绍过如下几篇Perception相关的文章,有兴趣的读者可以了解相关内容:《自动驾驶---Perception之IPM图和BEV图》《自动驾驶---P
- java短路运算符和逻辑运算符的区别
3213213333332132
java基础
/*
* 逻辑运算符——不论是什么条件都要执行左右两边代码
* 短路运算符——我认为在底层就是利用物理电路的“并联”和“串联”实现的
* 原理很简单,并联电路代表短路或(||),串联电路代表短路与(&&)。
*
* 并联电路两个开关只要有一个开关闭合,电路就会通。
* 类似于短路或(||),只要有其中一个为true(开关闭合)是
- Java异常那些不得不说的事
白糖_
javaexception
一、在finally块中做数据回收操作
比如数据库连接都是很宝贵的,所以最好在finally中关闭连接。
JDBCAgent jdbc = new JDBCAgent();
try{
jdbc.excute("select * from ctp_log");
}catch(SQLException e){
...
}finally{
jdbc.close();
- utf-8与utf-8(无BOM)的区别
dcj3sjt126com
PHP
BOM——Byte Order Mark,就是字节序标记 在UCS 编码中有一个叫做"ZERO WIDTH NO-BREAK SPACE"的字符,它的编码是FEFF。而FFFE在UCS中是不存在的字符,所以不应该出现在实际传输中。UCS规范建议我们在传输字节流前,先传输 字符"ZERO WIDTH NO-BREAK SPACE"。这样如
- JAVA Annotation之定义篇
周凡杨
java注解annotation入门注释
Annotation: 译为注释或注解
An annotation, in the Java computer programming language, is a form of syntactic metadata that can be added to Java source code. Classes, methods, variables, pa
- tomcat的多域名、虚拟主机配置
g21121
tomcat
众所周知apache可以配置多域名和虚拟主机,而且配置起来比较简单,但是项目用到的是tomcat,配来配去总是不成功。查了些资料才总算可以,下面就跟大家分享下经验。
很多朋友搜索的内容基本是告诉我们这么配置:
在Engine标签下增面积Host标签,如下:
<Host name="www.site1.com" appBase="webapps"
- Linux SSH 错误解析(Capistrano 的cap 访问错误 Permission )
510888780
linuxcapistrano
1.ssh -v hdfs@192.168.18.133 出现
Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password).
错误
运行状况如下:
OpenSSH_5.3p1, OpenSSL 1.0.1e-fips 11 Feb 2013
debug1: Reading configuratio
- log4j的用法
Harry642
javalog4j
一、前言: log4j 是一个开放源码项目,是广泛使用的以Java编写的日志记录包。由于log4j出色的表现, 当时在log4j完成时,log4j开发组织曾建议sun在jdk1.4中用log4j取代jdk1.4 的日志工具类,但当时jdk1.4已接近完成,所以sun拒绝使用log4j,当在java开发中
- mysql、sqlserver、oracle分页,java分页统一接口实现
aijuans
oraclejave
定义:pageStart 起始页,pageEnd 终止页,pageSize页面容量
oracle分页:
select * from ( select mytable.*,rownum num from (实际传的SQL) where rownum<=pageEnd) where num>=pageStart
sqlServer分页:
- Hessian 简单例子
antlove
javaWebservicehessian
hello.hessian.MyCar.java
package hessian.pojo;
import java.io.Serializable;
public class MyCar implements Serializable {
private static final long serialVersionUID = 473690540190845543
- 数据库对象的同义词和序列
百合不是茶
sql序列同义词ORACLE权限
回顾简单的数据库权限等命令;
解锁用户和锁定用户
alter user scott account lock/unlock;
//system下查看系统中的用户
select * dba_users;
//创建用户名和密码
create user wj identified by wj;
identified by
//授予连接权和建表权
grant connect to
- 使用Powermock和mockito测试静态方法
bijian1013
持续集成单元测试mockitoPowermock
实例:
package com.bijian.study;
import static org.junit.Assert.assertEquals;
import java.io.IOException;
import org.junit.Before;
import org.junit.Test;
import or
- 精通Oracle10编程SQL(6)访问ORACLE
bijian1013
oracle数据库plsql
/*
*访问ORACLE
*/
--检索单行数据
--使用标量变量接收数据
DECLARE
v_ename emp.ename%TYPE;
v_sal emp.sal%TYPE;
BEGIN
select ename,sal into v_ename,v_sal
from emp where empno=&no;
dbms_output.pu
- 【Nginx四】Nginx作为HTTP负载均衡服务器
bit1129
nginx
Nginx的另一个常用的功能是作为负载均衡服务器。一个典型的web应用系统,通过负载均衡服务器,可以使得应用有多台后端服务器来响应客户端的请求。一个应用配置多台后端服务器,可以带来很多好处:
负载均衡的好处
增加可用资源
增加吞吐量
加快响应速度,降低延时
出错的重试验机制
Nginx主要支持三种均衡算法:
round-robin
l
- jquery-validation备忘
白糖_
jquerycssF#Firebug
留点学习jquery validation总结的代码:
function checkForm(){
validator = $("#commentForm").validate({// #formId为需要进行验证的表单ID
errorElement :"span",// 使用"div"标签标记错误, 默认:&
- solr限制admin界面访问(端口限制和http授权限制)
ronin47
限定Ip访问
solr的管理界面可以帮助我们做很多事情,但是把solr程序放到公网之后就要限制对admin的访问了。
可以通过tomcat的http基本授权来做限制,也可以通过iptables防火墙来限制。
我们先看如何通过tomcat配置http授权限制。
第一步: 在tomcat的conf/tomcat-users.xml文件中添加管理用户,比如:
<userusername="ad
- 多线程-用JAVA写一个多线程程序,写四个线程,其中二个对一个变量加1,另外二个对一个变量减1
bylijinnan
java多线程
public class IncDecThread {
private int j=10;
/*
* 题目:用JAVA写一个多线程程序,写四个线程,其中二个对一个变量加1,另外二个对一个变量减1
* 两个问题:
* 1、线程同步--synchronized
* 2、线程之间如何共享同一个j变量--内部类
*/
public static
- 买房历程
cfyme
2015-06-21: 万科未来城,看房子
2015-06-26: 办理贷款手续,贷款73万,贷款利率5.65=5.3675
2015-06-27: 房子首付,签完合同
2015-06-28,央行宣布降息 0.25,就2天的时间差啊,没赶上。
首付,老婆找他的小姐妹接了5万,另外几个朋友借了1-
- [军事与科技]制造大型太空战舰的前奏
comsci
制造
天气热了........空调和电扇要准备好..........
最近,世界形势日趋复杂化,战争的阴影开始覆盖全世界..........
所以,我们不得不关
- dateformat
dai_lm
DateFormat
"Symbol Meaning Presentation Ex."
"------ ------- ------------ ----"
"G era designator (Text) AD"
"y year
- Hadoop如何实现关联计算
datamachine
mapreducehadoop关联计算
选择Hadoop,低成本和高扩展性是主要原因,但但它的开发效率实在无法让人满意。
以关联计算为例。
假设:HDFS上有2个文件,分别是客户信息和订单信息,customerID是它们之间的关联字段。如何进行关联计算,以便将客户名称添加到订单列表中?
&nbs
- 用户模型中修改用户信息时,密码是如何处理的
dcj3sjt126com
yii
当我添加或修改用户记录的时候对于处理确认密码我遇到了一些麻烦,所有我想分享一下我是怎么处理的。
场景是使用的基本的那些(系统自带),你需要有一个数据表(user)并且表中有一个密码字段(password),它使用 sha1、md5或其他加密方式加密用户密码。
面是它的工作流程: 当创建用户的时候密码需要加密并且保存,但当修改用户记录时如果使用同样的场景我们最终就会把用户加密过的密码再次加密,这
- 中文 iOS/Mac 开发博客列表
dcj3sjt126com
Blog
本博客列表会不断更新维护,如果有推荐的博客,请到此处提交博客信息。
本博客列表涉及的文章内容支持 定制化Google搜索,特别感谢 JeOam 提供并帮助更新。
本博客列表也提供同步更新的OPML文件(下载OPML文件),可供导入到例如feedly等第三方定阅工具中,特别感谢 lcepy 提供自动转换脚本。这里有导入教程。
- js去除空格,去除左右两端的空格
蕃薯耀
去除左右两端的空格js去掉所有空格js去除空格
js去除空格,去除左右两端的空格
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>&g
- SpringMVC4零配置--web.xml
hanqunfeng
springmvc4
servlet3.0+规范后,允许servlet,filter,listener不必声明在web.xml中,而是以硬编码的方式存在,实现容器的零配置。
ServletContainerInitializer:启动容器时负责加载相关配置
package javax.servlet;
import java.util.Set;
public interface ServletContainer
- 《开源框架那些事儿21》:巧借力与借巧力
j2eetop
框架UI
同样做前端UI,为什么有人花了一点力气,就可以做好?而有的人费尽全力,仍然错误百出?我们可以先看看几个故事。
故事1:巧借力,乌鸦也可以吃核桃
有一个盛产核桃的村子,每年秋末冬初,成群的乌鸦总会来到这里,到果园里捡拾那些被果农们遗落的核桃。
核桃仁虽然美味,但是外壳那么坚硬,乌鸦怎么才能吃到呢?原来乌鸦先把核桃叼起,然后飞到高高的树枝上,再将核桃摔下去,核桃落到坚硬的地面上,被撞破了,于是,
- JQuery EasyUI 验证扩展
可怜的猫
jqueryeasyui验证
最近项目中用到了前端框架-- EasyUI,在做校验的时候会涉及到很多需要自定义的内容,现把常用的验证方式总结出来,留待后用。
以下内容只需要在公用js中添加即可。
使用类似于如下:
<input class="easyui-textbox" name="mobile" id="mobile&
- 架构师之httpurlconnection----------读取和发送(流读取效率通用类)
nannan408
1.前言.
如题.
2.代码.
/*
* Copyright (c) 2015, S.F. Express Inc. All rights reserved.
*/
package com.test.test.test.send;
import java.io.IOException;
import java.io.InputStream
- Jquery性能优化
r361251
JavaScriptjquery
一、注意定义jQuery变量的时候添加var关键字
这个不仅仅是jQuery,所有javascript开发过程中,都需要注意,请一定不要定义成如下:
$loading = $('#loading'); //这个是全局定义,不知道哪里位置倒霉引用了相同的变量名,就会郁闷至死的
二、请使用一个var来定义变量
如果你使用多个变量的话,请如下方式定义:
. 代码如下:
var page
- 在eclipse项目中使用maven管理依赖
tjj006
eclipsemaven
概览:
如何导入maven项目至eclipse中
建立自有Maven Java类库服务器
建立符合maven代码库标准的自定义类库
Maven在管理Java类库方面有巨大的优势,像白衣所说就是非常“环保”。
我们平时用IDE开发都是把所需要的类库一股脑的全丢到项目目录下,然后全部添加到ide的构建路径中,如果用了SVN/CVS,这样会很容易就 把
- 中国天气网省市级联页面
x125858805
级联
1、页面及级联js
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
&l