VSCode之C++ & CUDA入门:reduce的N+1重境界

  1. 背景
    Reduce是几乎所有多线程技术的基础和关键,同样也是诸如深度学习等领域的核心,简单如卷积运算,复杂如梯度聚合、分布式训练等,了解CUDA实现reduce,以及优化reduce是理解CUDA软硬件连接点的很好切入点。

硬件环境:
VSCode之C++ & CUDA入门:reduce的N+1重境界_第1张图片

  1. 结果展示
chapter2 reduce test
sum of 16777216 random nums, host: 8389334.731, 18.6554 ms, GPU 0: 8389334.000, 4.3356 ms 
sum of 16777216 random nums, host: 8389334.731, 18.6554 ms, GPU 1: 8389335.000, 1.3475 ms 
sum of 16777216 random nums, host: 8389334.731, 18.6554 ms, GPU 2: 8389335.000, 1.3096 ms 
sum of 16777216 random nums, host: 8389334.731, 18.6554 ms, GPU 3: 8389335.000, 1.3098 ms 
sum of 16777216 random nums, host: 8389334.731, 18.6554 ms, GPU 4: 8389335.000, 1.3093 ms 
sum of 16777216 random nums, host: 8389334.731, 18.6554 ms, GPU 5: 8389335.000, 1.3119 ms 
sum of 16777216 random nums, host: 8389334.731, 18.6554 ms, GPU 6: 8389335.000, 1.3132 ms 
sum of 16777216 random nums, host: 8389334.731, 18.6554 ms, GPU 7: 8389335.000, 1.3157 ms 
sum of 16777216 random nums, host: 8389334.731, 18.6554 ms, L1 v7: 8389335.000, 1.3086 ms 
sum of 16777216 random nums, host: 8389334.731, 18.6554 ms, L1 Co: 8389335.000, 2.6103 ms 
sum of 16777216 random nums, host: 8389334.731, 18.6554 ms, L any: 8389335.000, 1.6096 ms 
sum of 16777216 random nums, host: 8389334.731, 18.6554 ms, GPU 8: 8389335.000, 1.3160 ms 
  1. 源码
#include"../include/utils/cx.h"
#include"../include/utils/cxtimers.h"
#include"cooperative_groups.h" // for cg namespace
#include"cooperative_groups/reduce.h" // for cg::reduce
#include"../include/utils/helper_math.h" // for overload += operator for reinterpret (CYDA SDK)
#include

namespace cg = cooperative_groups;

__global__ void reduce0(float* x, int n) {
    int tid = blockDim.x * blockIdx.x + threadIdx.x;
    x[tid] += x[tid+n];
}

__global__ void reduce1(float *x,int N)
{
	int tid = blockDim.x*blockIdx.x+threadIdx.x;
	float tsum = 0.0f;
	int stride = gridDim.x*blockDim.x;
	for(int k=tid; k<N; k += stride) tsum += x[k];
	x[tid] = tsum;
}

__global__ void reduce2(float *y,float *x,int N)
{
	extern __shared__ float tsum[]; // Dynamically Allocated Shared Mem
	int id = threadIdx.x;
	int tid = blockDim.x*blockIdx.x+threadIdx.x;
	int stride = gridDim.x*blockDim.x;
	tsum[id] = 0.0f;
	for(int k=tid;k<N;k+=stride) tsum[id] += x[k];
	__syncthreads();
	for(int k=blockDim.x/2; k>0; k /= 2){ // power of 2 reduction loop
		if(id<k) tsum[id] += tsum[id+k];
		__syncthreads();
	}
	if(id==0) y[blockIdx.x] = tsum[0]; // store one value per block
}

__global__ void reduce3(float *y,float *x,int N)
{
	extern __shared__ float tsum[];
	int id = threadIdx.x;
	int tid = blockDim.x*blockIdx.x+threadIdx.x;
	int stride = gridDim.x*blockDim.x;
	tsum[id] = 0.0f;
	for(int k=tid;k<N;k+=stride) tsum[id] += x[k];
	__syncthreads();
	int block2 = cx::pow2ceil(blockDim.x); // next higher power of 2
	for(int k=block2/2; k>0; k >>= 1){     // power of 2 reduction loop
		if(id<k && id+k < blockDim.x) tsum[id] += tsum[id+k];
		__syncthreads();
	}
	if(id==0) y[blockIdx.x] = tsum[0]; // store one value per block
}

__global__ void reduce4(float * y,float * x,int N)
{
	extern __shared__ float tsum[];
	int id = threadIdx.x;
	int tid = blockDim.x*blockIdx.x+threadIdx.x;
	int stride = gridDim.x*blockDim.x;
	tsum[id] = 0.0f;
	for(int k=tid;k<N;k+=stride) tsum[id] += x[k];
	__syncthreads();
	if(id<256 && id+256 < blockDim.x) tsum[id] += tsum[id+256]; __syncthreads();
	if(id<128) tsum[id] += tsum[id+128]; __syncthreads();
	if(id< 64) tsum[id] += tsum[id+ 64]; __syncthreads();
	if(id< 32) tsum[id] += tsum[id+ 32]; __syncthreads();
	// warp 0 only from here
	if(id< 16) tsum[id] += tsum[id+16]; __syncwarp();
	if(id< 8)  tsum[id] += tsum[id+ 8]; __syncwarp();
	if(id< 4)  tsum[id] += tsum[id+ 4]; __syncwarp();
	if(id< 2)  tsum[id] += tsum[id+ 2]; __syncwarp();
	if(id==0)  y[blockIdx.x] = tsum[0]+tsum[1];
}

template <int blockSize>
__global__ void reduce5(r_Ptr<float> sums,cr_Ptr<float> data,int n)
{
	// This template kernel assumes that blockDim.x = blockSize, 
	// that blockSize is power of 2 between 64 and 1024 
	__shared__ float s[blockSize];
	int id = threadIdx.x;       // rank in block   
	s[id] = 0;
	for(int tid = blockSize*blockIdx.x+threadIdx.x;
		tid < n; tid += blockSize*gridDim.x) s[id] += data[tid];
	__syncthreads();
	if(blockSize > 512 && id < 512 && id+512 < blockSize)s[id] += s[id+512];
	__syncthreads();
	if(blockSize > 256 && id < 256 && id+256 < blockSize)s[id] += s[id+256];
	__syncthreads();
	if(blockSize > 128 && id < 128 && id+128 < blockSize)s[id] += s[id+128];
	__syncthreads();
	if(blockSize >  64 && id <  64 && id+ 64 < blockSize)s[id] += s[id+64];
	__syncthreads();
	if(id < 32) {  //  single warp from here
		s[id]             += s[id + 32]; __syncwarp(); // the syncwarps
		if(id < 16) s[id] += s[id + 16]; __syncwarp(); // are required
		if(id <  8) s[id] += s[id +  8]; __syncwarp(); // for devices of
		if(id <  4) s[id] += s[id +  4]; __syncwarp(); // CC = 7 and above
		if(id <  2) s[id] += s[id +  2]; __syncwarp(); // for CC < 7
		if(id <  1) s[id] += s[id +  1]; __syncwarp(); // they do nothing

		if(id == 0) sums[blockIdx.x] = s[0]; // store block sum
	}
}
// using warp_shrl functions
template<int blockSize>
__global__ void reduce6(r_Ptr<float> sums, cr_Ptr<float> data, int n) {
    __shared__ float s[blockSize];
    auto grid = cg::this_grid();
    auto block = cg::this_thread_block();
    auto warp = cg::tiled_partition<32>(block);
    int id = block.thread_rank();
    s[id] = 0.0f;
    for (int tid = grid.thread_rank(); tid < n; tid += grid.size()) {
        s[id] += data[tid];
    }
    block.sync();
    if (blockSize > 512 && id < 512 && id + 512 < blockSize) {
        s[id] += s[id + 512];
    }
    block.sync();
    if (blockSize > 256 && id < 256 && id + 256 < blockSize) {
        s[id] += s[id+256];
    }
    block.sync();
    if (blockSize > 128 && id < 128 && id + 128 < blockSize) {
        s[id] += s[id+128];
    }
    block.sync();
    if (blockSize > 64 && id < 64 && id + 64 < blockSize) {
        s[id] += s[id+64];
    }
    block.sync();
    if (warp.meta_group_rank() == 0) {
        s[id] += s[id+32];warp.sync();
        s[id] += warp.shfl_down(s[id], 16);
        s[id] += warp.shfl_down(s[id], 8);
        s[id] += warp.shfl_down(s[id], 4);
        s[id] += warp.shfl_down(s[id], 2);
        s[id] += warp.shfl_down(s[id], 1);
        if (id == 0){
            sums[blockIdx.x] = s[0];
        }
    }
}

// warp-only reduce function
__global__ void reduce7(r_Ptr<float> sums,cr_Ptr<float> data,int n)
{
	// This kernel assumes the array sums is set to zeros on entry
	// also blockSize is multiple of 32 (should always be true)
	auto grid =  cg::this_grid();
	auto block = cg::this_thread_block();
	auto warp =  cg::tiled_partition<32>(block);

	float v = 0.0f;  // accumulate thread sums in register variable v
	for(int tid=grid.thread_rank(); tid<n; tid+=grid.size()) v += data[tid];
	warp.sync();
	v += warp.shfl_down(v,16); // | 
	v += warp.shfl_down(v,8);  // | warp level
	v += warp.shfl_down(v,4);  // | reduce here
	v += warp.shfl_down(v,2);  // |
	v += warp.shfl_down(v,1);  // | 
						  //  use atomicAdd here to sum over warps
	if(warp.thread_rank()==0) atomicAdd(&sums[block.group_index().x],v);
}

// warp-only and L1 cache function
__global__ void reduce7_L1(r_Ptr<float> sums, cr_Ptr<float> data, int n) {
    auto grid = cg::this_grid();
    auto block = cg::this_thread_block();
    auto warp = cg::tiled_partition<32>(block);

    float4 v4 = {0.0f, 0.0f, 0.0f, 0.0f};
    for(int tid = grid.thread_rank(); tid < n/4; tid += grid.size()) {
        v4 += reinterpret_cast<const float4 *>(data)[tid];
    }
    float v = v4.x + v4.y + v4.z + v4.w;
    warp.sync();
    v += warp.shfl_down(v, 16);
    v += warp.shfl_down(v, 8);
    v += warp.shfl_down(v, 4);
    v += warp.shfl_down(v, 2);
    v += warp.shfl_down(v, 1);
    if (warp.thread_rank() == 0){
        atomicAdd(&sums[block.group_index().x], v);
    }
}

__device__ void reduce7_L1_coal(r_Ptr<float>sums,cr_Ptr<float>data,int n)
{
	// This function assumes that a.size() is power of 2 in [1,32]
	// and that n is a multiple of 4
	auto g = cg::this_grid();
	auto b = cg::this_thread_block();
	auto a = cg::coalesced_threads(); // active threads in warp
	float4 v4 ={0,0,0,0};
	for(int tid = g.thread_rank(); tid < n/4; tid += g.size())
		v4 += reinterpret_cast<const float4 *>(data)[tid];

	float v = v4.x + v4.y + v4.z + v4.w;
	a.sync();
	if(a.size() > 16) v += a.shfl_down(v,16); // NB no new
	if(a.size() >  8) v += a.shfl_down(v,8);  // thread 
	if(a.size() >  4) v += a.shfl_down(v,4);  // divergence
	if(a.size() >  2) v += a.shfl_down(v,2);  // allowed
	if(a.size() >  1) v += a.shfl_down(v,1);  // here               // rank here is within coal group therefore 
	if(a.thread_rank() == 0) atomicAdd(&sums[b.group_index().x],v); // rank==0 OK even for odd only threads
}

__global__ void reduce7_coal_even_odd(r_Ptr<float>sumeven,r_Ptr<float>sumodd,cr_Ptr<float>data,int n)
{
	// divergent code here
	if(threadIdx.x%2==0) reduce7_L1_coal(sumeven,data,n);
	else                 reduce7_L1_coal(sumodd,data,n);
}

// reduce L1 coal any
__device__ void reduce7_L1_coal_any(r_Ptr<float>sums,cr_Ptr<float>data,int n)
{
	// This function works for any value of a.size() in [1,32] 
	// it assumes that n is a multiple of 4
	auto g = cg::this_grid();
	auto b = cg::this_thread_block();
	auto w = cg::tiled_partition<32>(b); // whole warp
	auto a = cg::coalesced_threads();    // active threads in warp
	int warps = g.group_dim().x*w.meta_group_size(); // number of warps in grid
	// divide data into contiguous parts, with one part per warp 
	int part_size = ((n/4)+warps-1)/warps;
	int part_start = (b.group_index().x*w.meta_group_size() +
		w.meta_group_rank())*part_size;
	int part_end = min(part_start+part_size,n/4);
	// get part sub-sums into threads of a
	float4 v4 ={0,0,0,0};
	int id = a.thread_rank();
	for(int k=part_start+id; k<part_end; k+=a.size()) // adjacent adds within
		v4 += reinterpret_cast<const float4 *>(data)[k]; //    the warp
	float v = v4.x + v4.y + v4.z + v4.w;
	a.sync();
	// now reduce over a
	// first deal with items held by ranks >= kstart
	int kstart = 1 << (31 - __clz(a.size())); // max power of 2 <= a.size()
	if(a.size() > kstart) {
		float w = a.shfl_down(v,kstart);
		if(a.thread_rank() < a.size()-kstart) v += w;// only update v for         
		a.sync();                                    // valid low ranking threads
	}
	// then do power of 2 reduction
	for(int k = kstart/2; k>0; k /= 2) v += a.shfl_down(v,k);
	if(a.thread_rank() == 0) atomicAdd(&sums[b.group_index().x],v);
}

__global__ void reduce7_any(r_Ptr<float>sums,cr_Ptr<float>data,int n)
{
	if(threadIdx.x % 3 == 0)  reduce7_L1_coal_any(sums,data,n);
}

// cg warp-level function
__global__ void reduce8(r_Ptr<float> sums, cr_Ptr<float> data, int n) {
    auto grid = cg::this_grid();
    auto block = cg::this_thread_block();
    auto warp = cg::tiled_partition<32>(block);

    float v = 0.0f;
    for(int tid = grid.thread_rank(); tid < n; tid += grid.size()) {
        v += data[tid];
    }
    v = cg::reduce(warp, v, cg::plus<float>());
    warp.sync();
    if (warp.thread_rank() == 0) {
        atomicAdd(&sums[block.group_index().x], v);
    }
}

void test_reduce(const int N) {
    // const int N = 1 << 24;
    const int blocks = 256;
    const int threads = 256;
    const int nreps = 1000;
    thrust::host_vector<float> x(N);
    thrust::device_vector<float> dx(N);

    // init data
    std::default_random_engine gen(42);
    std::uniform_real_distribution<float> fran(0.0, 1.0);
    for (int k = 0; k < N; k++) {
        x[k] = fran(gen);
    }

    // host to device
    dx = x;
    cx::timer tim;
    
    // cpu time test
    double host_sum = 0.0;
    for (int k = 0; k < N; k++) {
        host_sum += x[k];
    }
    double t1 = tim.lap_ms();

    // gpu test reduce0
    double gpu_sum = 0.0;
    tim.reset();
    for (int m = N/2; m > 0; m /= 2) {
        int threads = std::min(256, m);
        int blocks = std::max(m / 256, 1);
        reduce0<<<blocks, threads>>> (dx.data().get(), m);
    }
    cudaDeviceSynchronize();
    double t2 = tim.lap_ms();

    // device to host
    gpu_sum = dx[0];
    printf("sum of %d random nums, host: %.3f, %.4f ms, GPU 0: %.3f, %.4f ms \n", N, host_sum, t1, gpu_sum, t2);

    // gpu test reduce1
    dx = x;
    tim.reset();
    for (int rep = 0; rep < nreps; rep++) {
        reduce1<<<blocks, threads>>> (dx.data().get(), N);
        reduce1<<<1, threads>>> (dx.data().get(), blocks * threads);
        reduce1<<<1, 1>>> (dx.data().get(), threads);
        if (rep == 0) gpu_sum = dx[0];
    }
    cudaDeviceSynchronize();
    double t3 = tim.lap_ms() / nreps;
    printf("sum of %d random nums, host: %.3f, %.4f ms, GPU 1: %.3f, %.4f ms \n", N, host_sum, t1, gpu_sum, t3);

    // gpu test reduce2
    dx = x;
    thrust::device_vector<float> dy(blocks);
    tim.reset();
    for (int rep = 0; rep < nreps; rep++) {
        reduce2<<<blocks, threads, threads * sizeof(float)>>> (dy.data().get(), dx.data().get(), N);
        reduce2<<<1, threads, blocks * sizeof(float)>>> (dx.data().get(), dy.data().get(), blocks);
        if (rep == 0) gpu_sum = dx[0];
    }
    cudaDeviceSynchronize();
    double t4 = tim.lap_ms() / nreps;
    printf("sum of %d random nums, host: %.3f, %.4f ms, GPU 2: %.3f, %.4f ms \n", N, host_sum, t1, gpu_sum, t4);

    // gpu test reduce3
    dx = x;
    tim.reset();
    for (int rep = 0; rep < nreps; rep++) {
        reduce3<<<blocks, threads, threads * sizeof(float)>>> (dy.data().get(), dx.data().get(), N);
        reduce3<<<1, threads, blocks * sizeof(float)>>> (dx.data().get(), dy.data().get(), blocks);
        if (rep == 0) gpu_sum = dx[0];
    }
    cudaDeviceSynchronize();
    double t5 = tim.lap_ms() / nreps;
    printf("sum of %d random nums, host: %.3f, %.4f ms, GPU 3: %.3f, %.4f ms \n", N, host_sum, t1, gpu_sum, t5);

    // gpu test reduce4
    dx = x;
    tim.reset();
    for (int rep = 0; rep < nreps; rep++) {
        reduce4<<<blocks, threads, threads * sizeof(float)>>> (dy.data().get(), dx.data().get(), N);
        reduce4<<<1, threads, blocks * sizeof(float)>>> (dx.data().get(), dy.data().get(), blocks);
        if (rep == 0) gpu_sum = dx[0];
    }
    cudaDeviceSynchronize();
    double t6 = tim.lap_ms() / nreps;
    printf("sum of %d random nums, host: %.3f, %.4f ms, GPU 4: %.3f, %.4f ms \n", N, host_sum, t1, gpu_sum, t6);

    // gpu test reduce5
    dx = x;
    tim.reset();
    for (int rep = 0; rep < nreps; rep++) {
        reduce5<256><<<blocks,threads,threads*sizeof(float)>>>(dy.data().get(),dx.data().get(),N);
    }
    reduce4<<<1, blocks, blocks*sizeof(float)>>>(dx.data().get(), dy.data().get(), blocks);
    cudaDeviceSynchronize();
    double t7 = tim.lap_ms() / nreps;
    gpu_sum = dx[0];
    printf("sum of %d random nums, host: %.3f, %.4f ms, GPU 5: %.3f, %.4f ms \n", N, host_sum, t1, gpu_sum, t7);

    // gpu tst reduce6
    dx = x;
    tim.reset();
    for (int rep = 0; rep < nreps; rep++) {
        reduce6<256><<<blocks, threads, threads*sizeof(float)>>>(dy.data().get(), dx.data().get(), N);
    }
    reduce4<<<1, blocks, blocks*sizeof(float)>>>(dx.data().get(), dy.data().get(), blocks);
    cudaDeviceSynchronize();
    double t8 = tim.lap_ms() / nreps;
    gpu_sum = dx[0];
    printf("sum of %d random nums, host: %.3f, %.4f ms, GPU 6: %.3f, %.4f ms \n", N, host_sum, t1, gpu_sum, t8);

    // gpu test reduce7
    dx = x;
    thrust::device_vector<float> dz(blocks);
    tim.reset();
    for (int rep = 0; rep < nreps; rep++) {
        reduce7<<<blocks, threads, threads*sizeof(float)>>>(dz.data().get(), dx.data().get(), N);
        reduce7<<<1, blocks, blocks*sizeof(float)>>>(dx.data().get(), dz.data().get(), blocks);
        if (rep == 0) gpu_sum = dx[0];
    }
    
    cudaDeviceSynchronize();
    double t9 = tim.lap_ms() / nreps;
    printf("sum of %d random nums, host: %.3f, %.4f ms, GPU 7: %.3f, %.4f ms \n", N, host_sum, t1, gpu_sum, t9);

    // gpu test reduce7_L1
    dx = x;
    thrust::fill(dz.begin(), dz.end(), 0.0);
    tim.reset();
    for (int rep = 0; rep < nreps; rep++) {
        reduce7_L1<<<blocks, threads, threads*sizeof(float)>>>(dz.data().get(), dx.data().get(), N);
        reduce7_L1<<<1, blocks, blocks*sizeof(float)>>>(dx.data().get(), dz.data().get(), blocks);
        if (rep == 0) gpu_sum = dx[0];
    }
    cudaDeviceSynchronize();
    double t91 = tim.lap_ms() / nreps;
    printf("sum of %d random nums, host: %.3f, %.4f ms, L1 v7: %.3f, %.4f ms \n", N, host_sum, t1, gpu_sum, t91);

    // gpu test reduce7_L1 coal
    thrust::device_vector<float>  dy_even(blocks);  // only even elements are used
	thrust::device_vector<float>  dy_odd(blocks);   // only odd elements are used
    dx = x;
    tim.reset();
    for(int rep=0;rep<nreps;rep++){
		reduce7_coal_even_odd<<<blocks,threads>>>(dy_even.data().get(),dy_odd.data().get(),dx.data().get(),N);
        if (rep == 0) {
            // use reduce7_L1 for final step
            // dx[0] = 0.0f; // clear output buffer
            reduce7_L1<<<1,blocks>>>(dx.data().get(),dy_even.data().get(),blocks);
            reduce7_L1<<<1,blocks>>>(dx.data().get(),dy_odd.data().get(),blocks);
            gpu_sum  = dx[0];
        }
    }
	cudaDeviceSynchronize();
	double t92 = tim.lap_ms()/nreps;
    // gpu_sum  = dx[0];  // D2H copy (1 word)
    printf("sum of %d random nums, host: %.3f, %.4f ms, L1 Co: %.3f, %.4f ms \n", N, host_sum, t1, gpu_sum, t92);

    // gpu test reduce 7 L1 coal any
    dx = x;
    thrust::fill(dy.begin(), dy.end(), 0.0);
    tim.reset();
    for(int rep=0;rep<nreps;rep++){
		reduce7_any<<<blocks,threads>>>(dy.data().get(),dx.data().get(),N);
        if (rep == 0) {
            reduce7_L1<<<1,blocks>>>(dx.data().get(),dy.data().get(),blocks);
            gpu_sum = dx[0];
        }
	}
    
    cudaDeviceSynchronize();
    double t93 = tim.lap_ms() / nreps;
    printf("sum of %d random nums, host: %.3f, %.4f ms, L any: %.3f, %.4f ms \n", N, host_sum, t1, gpu_sum, t93);


    // gpu test reduce8
    dx = x;
    thrust::fill(dy.begin(), dy.end(), 0.0);
    tim.reset();
    for (int rep = 0; rep < nreps; rep++) {
        reduce8<<<blocks, threads, threads*sizeof(float)>>>(dy.data().get(), dx.data().get(), N);
        reduce8<<<1, blocks, blocks*sizeof(float)>>>(dx.data().get(), dy.data().get(), blocks);
        if (rep == 0) gpu_sum = dx[0];
    }
    
    cudaDeviceSynchronize();
    double t10 = tim.lap_ms() / nreps;
    printf("sum of %d random nums, host: %.3f, %.4f ms, GPU 8: %.3f, %.4f ms \n", N, host_sum, t1, gpu_sum, t10);
}
  1. 小结
    1)尝试了9+1中CUDA中最基本的reduce方法,从基本方法到高级库,从精度和速度两方面进行的对比,可以看到与CPU的reduce算法相比,GPU算法明显快很多,更好的显卡,速度应该会更快,同时要注意部分精度损失,这也是CUDA编程中应注意到是否在误差允许范围内;
    2)理论上reduce7_L1_coal应该比reduce7_L1,reduce7速度更快,实测本地电脑测试反而更慢了,猜测原因可能是机器的GPU性能受限导致的;
    3)以上测试结果在不同机子上的总体趋势较一致,细微有差别,与GPU的架构、block\threads的数量、数据计算的总量等都有关系,实际应用中可能需要进一步微调。

你可能感兴趣的:(CUDA,C++,vscode,c++,ide)