Redis是我们Java开发中,使用频次非常高的一个nosql数据库,数据以key-value键值对的形式存储在内存中。redis的常用使用场景,可以做缓存,分布式锁,自增序列等,使用redis的方式和我们使用数据库的方式差不多,首先我们要在自己的本机电脑或者服务器上安装一个redis的服务器,通过我们的java客户端在程序中进行集成,然后通过客户端完成对redis的增删改查操作。redis的Java客户端类型还是很多的,常见的有jedis, redission,lettuce等,所以我们在集成的时候,我们可以选择直接集成这些原生客户端。但是在springBoot中更常见的方式是集成spring-data-redis,这是spring提供的一个专门用来操作redis的项目,封装了对redis的常用操作,里边主要封装了jedis和lettuce两个客户端。相当于是在他们的基础上加了一层门面。
本篇文章我们就来重点介绍,springBoot通过集成spring-data-redis使用对于redis的常用操作。
添加redis所需依赖:
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-data-redisartifactId>
dependency>
完整pom.xml
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0modelVersion>
<groupId>org.examplegroupId>
<artifactId>spring-boot-redisartifactId>
<version>1.0-SNAPSHOTversion>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-dependenciesartifactId>
<version>2.6.2version>
<type>pomtype>
<scope>importscope>
dependency>
dependencies>
dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-webartifactId>
dependency>
<dependency>
<groupId>org.projectlombokgroupId>
<artifactId>lombokartifactId>
<version>1.18.22version>
<scope>providedscope>
dependency>
<dependency>
<groupId>com.baomidougroupId>
<artifactId>mybatis-plus-boot-starterartifactId>
<version>3.5.1version>
dependency>
<dependency>
<groupId>com.baomidougroupId>
<artifactId>mybatis-plus-generatorartifactId>
<version>3.5.1version>
dependency>
<dependency>
<groupId>org.freemarkergroupId>
<artifactId>freemarkerartifactId>
<version>2.3.31version>
dependency>
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-devtoolsartifactId>
<optional>trueoptional>
dependency>
<dependency>
<groupId>mysqlgroupId>
<artifactId>mysql-connector-javaartifactId>
<scope>runtimescope>
dependency>
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-data-redisartifactId>
dependency>
<dependency>
<groupId>org.apache.commonsgroupId>
<artifactId>commons-pool2artifactId>
dependency>
dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-maven-pluginartifactId>
<version>${project.parent.version}version>
plugin>
plugins>
build>
project>
这里我们直接引入了spring-boot-starter-data-redis这个springBoot本身就已经提供好了的starter, 我们可以点击去看一下这个starter中包含了哪些依赖:
可以发现,里面包含了spring-data-redis和 lettuce-core两个核心包,这就是为什么说我们的spring-boot-starter-data-redis默认使用的就是lettuce这个客户端了。
如果我们想要使用jedis客户端怎么办呢?就需要排除lettuce这个依赖,再引入jedis的相关依赖就可以了。
那么为什么我们只需要通过引入不同的依赖就能让spring-data-redis可以自由切换客户端呢,这其实就涉及到了springBoot的自动化配置原理。我们可以给大家简单讲解一下。
springBoot这个框架之所以可以通过各种starter无缝融合其他技术的一大主要原因就是springBoot本身的自动化配置功能。所谓自动化配置就是springBoot本身已经预先设置好了一些常用框架的整合类。然后通过类似于ConditionOn这样的条件判断注解,去辨别你的项目中是否有相关的类(或配置)了,进而进行相关配置的初始化。
springBoot预设的自动化配置类都位于spring-boot-autoconfigure这个包中,只要我们搭建了springBoot的项目,这个包就会被引入进来。
而这个包下就有一个RedisAutoConfiguration这个类,顾名思义就是Redis的自动化配置。在这个类中,会引入LettuceConnectionConfiguration 和 JedisConnectionConfiguration 两个配置类,分别对应lettuce和jedis两个客户端。
而这个两个类上都是用了ConditionOn注解来进行判断是否加载。
jedis如下;
而由于我们的项目自动引入了lettuce-core,而没有引入jedis相关依赖,所以LettuceConnectionConfiguration这个类的判断成立会被加载,而Jedis的判断不成立,所以不会加载。进而lettuce的配置生效,所以我们在使用的使用, 默认就是lettuce的客户端。
然后我们需要配置连接redis所需的账号密码等信息,这里大家要提前安装好redis,保证我们的本机程序可以连接到我们的redis, 如果不知道redis如何安装,可以参考文章: [Linux系统安装redis6.0.5]
常规配置如下: 在application.yml配置文件中配置 redis的连接信息
spring:
redis:
database: 0 # Redis数据库索引(默认为0)
host: localhost # Redis服务器地址
port: 6379 # Redis服务器端口
password: # Redis服务器连接密码(默认为空)
timeout: 0 # 连接超时时间(毫秒)
lettuce:
pool:
max-active: 8 # 连接池最大连接数(使用负值表示没有限制)
max-wait: -1 # 连接池最大阻塞等待时间(使用负值表示没有限制)
max-idle: 8 # 连接池中的最大空闲连接
min-idle: 0 # 连接池中的最小空闲连接
如果有其他配置放到一起:
server:
port:8080
spring:
datasource: #定义数据源
#127.0.0.1为本机测试的ip,3306是mysql的端口号。serverTimezone是定义时区,照抄就好,mysql高版本需要定义这些东西
#useSSL也是某些高版本mysql需要问有没有用SSL连接
url: jdbc:mysql://127.0.0.1:3306/db01?serverTimezone=GMT%2B8&useSSL=FALSE
username: root #数据库用户名,root为管理员
password: 123456 #该数据库用户的密码
driver-class-name: com.mysql.cj.jdbc.Driver
redis:
database: 0 # Redis数据库索引(默认为0)
host: localhost # Redis服务器地址
port: 6379 # Redis服务器端口
password: # Redis服务器连接密码(默认为空)
timeout: 0 # 连接超时时间(毫秒)
lettuce:
pool:
max-active: 8 # 连接池最大连接数(使用负值表示没有限制)
max-wait: -1 # 连接池最大阻塞等待时间(使用负值表示没有限制)
max-idle: 8 # 连接池中的最大空闲连接
min-idle: 0 # 连接池中的最小空闲连接
devtools:
restart:
enabled: true
这样我们就可以直接在项目当中操作redis了。如果使用的是集群,那么使用如下配置方式:
spring:
redis:
password: 123456
cluster:
nodes: 10.255.144.115:7001,10.255.144.115:7002,10.255.144.115:7003,10.255.144.115:7004,10.255.144.115:7005,10.255.144.115:7006
max-redirects: 3
但是有的时候我们想要给我们的redis客户端配置上连接池。就像我们连接mysql的时候,也会配置连接池一样,目的就是增加对于数据连接的管理,提升访问的效率,也保证了对资源的合理利用。那么我们如何配置连接池呢,这里大家一定要注意了,很多网上的文章中,介绍的方法可能由于版本太低,都不是特别的准确。 比如很多人使用spring.redis.pool来配置,这个是不对的(不清楚是不是老版本是这样的配置的,但是在springboot-starter-data-redis中这种写法不对)。首先是配置文件,由于我们使用的lettuce客户端,所以配置的时候,在spring.redis下加上lettuce再加上pool来配置,具体如下;
spring:
redis:
database: 0 # Redis数据库索引(默认为0)
host: localhost # Redis服务器地址
port: 6379 # Redis服务器端口
password: # Redis服务器连接密码(默认为空)
timeout: 0 # 连接超时时间(毫秒)
lettuce:
pool:
max-active: 8 # 连接池最大连接数(使用负值表示没有限制)
max-wait: -1 # 连接池最大阻塞等待时间(使用负值表示没有限制)
max-idle: 8 # 连接池中的最大空闲连接
min-idle: 0 # 连接池中的最小空闲连接
如果使用的是jedis,就把lettuce换成jedis(同时要注意依赖也是要换的)。
但是仅仅这在配置文件中加入,其实连接池是不会生效的。这里大家一定要注意,很多同学在配置文件上加上了这段就以为连接池已经配置好了,其实并没有,还少了最关键的一步,就是要导入一个依赖,不导入的话,这么配置也没有用。
<dependency>
<groupId>org.apache.commonsgroupId>
<artifactId>commons-pool2artifactId>
dependency>
之后,连接池才会生效。我们可以做一个对比。 在导包前后,观察RedisTemplate对象的值就可以看出来。
导入之前:
导入之后:
到这以后,我们的连接池信息才有值,这也印证了我们上面的结论。
具体的配置信息我们可以看一下源代码,源码中使用RedisProperties 这个类来接收redis的配置参数。
我们的配置工作准备就绪以后,我们就可以在项目中操作redis了,操作的话,使用spring-data-redis中为我们提供的 RedisTemplate 这个类,就可以操作了。我们先举个简单的例子,插入一个键值对(值为string)。
package com.dhx.controller;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
@RestController
@RequestMapping("redis")
public class RedisController {
private final RedisTemplate redisTemplate;
public RedisController(RedisTemplate redisTemplate) {
this.redisTemplate = redisTemplate;
}
@GetMapping("save")
public String save(String key, String value){
redisTemplate.opsForValue().set(key, value);
return "success";
}
}
我们在前面的代码中已经通过RedisTemplate成功操作了redis服务器,比如set一个字符串,我们可以使用:
redisTemplate.opsForValue().set(key, value);
来put一个String类型的键值对。而redis中可以支持 string, list, hash,set, zset五种数据格式,这五种数据格式的常用操作,都在RedisTemplate这个类中进行了封装。 操作string类型就是用opsForValue,操作list类型是用listOps, 操作set类型是用setOps等等。我们可以通过查看RedisTemplate这个类中的源码来了解大致有哪些功能。
而这些功能都在这一个类中,使用起来其实并不是很方便,所有一般情况下,我们都是单独封装一个工具类,来把常用的一些方法进行抽象。操作的时候,直接通过工具类来操作。
package com.dhx.util;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Component;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.TimeUnit;
@Component
public class RedisUtil {
@Autowired
private RedisTemplate redisTemplate;
/**
* 给一个指定的 key 值附加过期时间
*
* @param key
* @param time
* @return
*/
public boolean expire(String key, long time) {
return redisTemplate.expire(key, time, TimeUnit.SECONDS);
}
/**
* 根据key 获取过期时间
*
* @param key
* @return
*/
public long getTime(String key) {
return redisTemplate.getExpire(key, TimeUnit.SECONDS);
}
/**
* 根据key 获取过期时间
*
* @param key
* @return
*/
public boolean hasKey(String key) {
return redisTemplate.hasKey(key);
}
/**
* 移除指定key 的过期时间
*
* @param key
* @return
*/
public boolean persist(String key) {
return redisTemplate.boundValueOps(key).persist();
}
//- - - - - - - - - - - - - - - - - - - - - String类型 - - - - - - - - - - - - - - - - - - - -
/**
* 根据key获取值
*
* @param key 键
* @return 值
*/
public Object get(String key) {
return key == null ? null : redisTemplate.opsForValue().get(key);
}
/**
* 将值放入缓存
*
* @param key 键
* @param value 值
* @return true成功 false 失败
*/
public void set(String key, String value) {
redisTemplate.opsForValue().set(key, value);
}
/**
* 将值放入缓存并设置时间
*
* @param key 键
* @param value 值
* @param time 时间(秒) -1为无期限
* @return true成功 false 失败
*/
public void set(String key, String value, long time) {
if (time > 0) {
redisTemplate.opsForValue().set(key, value, time, TimeUnit.SECONDS);
} else {
redisTemplate.opsForValue().set(key, value);
}
}
/**
* 批量添加 key (重复的键会覆盖)
*
* @param keyAndValue
*/
public void batchSet(Map<String, String> keyAndValue) {
redisTemplate.opsForValue().multiSet(keyAndValue);
}
/**
* 批量添加 key-value 只有在键不存在时,才添加
* map 中只要有一个key存在,则全部不添加
*
* @param keyAndValue
*/
public void batchSetIfAbsent(Map<String, String> keyAndValue) {
redisTemplate.opsForValue().multiSetIfAbsent(keyAndValue);
}
/**
* 对一个 key-value 的值进行加减操作,
* 如果该 key 不存在 将创建一个key 并赋值该 number
* 如果 key 存在,但 value 不是长整型 ,将报错
*
* @param key
* @param number
*/
public Long increment(String key, long number) {
return redisTemplate.opsForValue().increment(key, number);
}
/**
* 对一个 key-value 的值进行加减操作,
* 如果该 key 不存在 将创建一个key 并赋值该 number
* 如果 key 存在,但 value 不是 纯数字 ,将报错
*
* @param key
* @param number
*/
public Double increment(String key, double number) {
return redisTemplate.opsForValue().increment(key, number);
}
//- - - - - - - - - - - - - - - - - - - - - set类型 - - - - - - - - - - - - - - - - - - - -
/**
* 将数据放入set缓存
*
* @param key 键
* @return
*/
public void sSet(String key, String value) {
redisTemplate.opsForSet().add(key, value);
}
/**
* 获取变量中的值
*
* @param key 键
* @return
*/
public Set<Object> members(String key) {
return redisTemplate.opsForSet().members(key);
}
/**
* 随机获取变量中指定个数的元素
*
* @param key 键
* @param count 值
* @return
*/
public void randomMembers(String key, long count) {
redisTemplate.opsForSet().randomMembers(key, count);
}
/**
* 随机获取变量中的元素
*
* @param key 键
* @return
*/
public Object randomMember(String key) {
return redisTemplate.opsForSet().randomMember(key);
}
/**
* 弹出变量中的元素
*
* @param key 键
* @return
*/
public Object pop(String key) {
return redisTemplate.opsForSet().pop("setValue");
}
/**
* 获取变量中值的长度
*
* @param key 键
* @return
*/
public long size(String key) {
return redisTemplate.opsForSet().size(key);
}
/**
* 根据value从一个set中查询,是否存在
*
* @param key 键
* @param value 值
* @return true 存在 false不存在
*/
public boolean sHasKey(String key, Object value) {
return redisTemplate.opsForSet().isMember(key, value);
}
/**
* 检查给定的元素是否在变量中。
*
* @param key 键
* @param obj 元素对象
* @return
*/
public boolean isMember(String key, Object obj) {
return redisTemplate.opsForSet().isMember(key, obj);
}
/**
* 转移变量的元素值到目的变量。
*
* @param key 键
* @param value 元素对象
* @param destKey 元素对象
* @return
*/
public boolean move(String key, String value, String destKey) {
return redisTemplate.opsForSet().move(key, value, destKey);
}
/**
* 批量移除set缓存中元素
*
* @param key 键
* @param values 值
* @return
*/
public void remove(String key, Object... values) {
redisTemplate.opsForSet().remove(key, values);
}
/**
* 通过给定的key求2个set变量的差值
*
* @param key 键
* @param destKey 键
* @return
*/
public Set<Set> difference(String key, String destKey) {
return redisTemplate.opsForSet().difference(key, destKey);
}
//- - - - - - - - - - - - - - - - - - - - - hash类型 - - - - - - - - - - - - - - - - - - - -
/**
* 加入缓存
*
* @param key 键
* @param map 键
* @return
*/
public void add(String key, Map<String, String> map) {
redisTemplate.opsForHash().putAll(key, map);
}
/**
* 获取 key 下的 所有 hashkey 和 value
*
* @param key 键
* @return
*/
public Map<Object, Object> getHashEntries(String key) {
return redisTemplate.opsForHash().entries(key);
}
/**
* 验证指定 key 下 有没有指定的 hashkey
*
* @param key
* @param hashKey
* @return
*/
public boolean hashKey(String key, String hashKey) {
return redisTemplate.opsForHash().hasKey(key, hashKey);
}
/**
* 获取指定key的值string
*
* @param key 键
* @param key2 键
* @return
*/
public String getMapString(String key, String key2) {
return redisTemplate.opsForHash().get("map1", "key1").toString();
}
/**
* 获取指定的值Int
*
* @param key 键
* @param key2 键
* @return
*/
public Integer getMapInt(String key, String key2) {
return (Integer) redisTemplate.opsForHash().get("map1", "key1");
}
/**
* 弹出元素并删除
*
* @param key 键
* @return
*/
public String popValue(String key) {
return redisTemplate.opsForSet().pop(key).toString();
}
/**
* 删除指定 hash 的 HashKey
*
* @param key
* @param hashKeys
* @return 删除成功的 数量
*/
public Long delete(String key, String... hashKeys) {
return redisTemplate.opsForHash().delete(key, hashKeys);
}
/**
* 给指定 hash 的 hashkey 做增减操作
*
* @param key
* @param hashKey
* @param number
* @return
*/
public Long increment(String key, String hashKey, long number) {
return redisTemplate.opsForHash().increment(key, hashKey, number);
}
/**
* 给指定 hash 的 hashkey 做增减操作
*
* @param key
* @param hashKey
* @param number
* @return
*/
public Double increment(String key, String hashKey, Double number) {
return redisTemplate.opsForHash().increment(key, hashKey, number);
}
/**
* 获取 key 下的 所有 hashkey 字段
*
* @param key
* @return
*/
public Set<Object> hashKeys(String key) {
return redisTemplate.opsForHash().keys(key);
}
/**
* 获取指定 hash 下面的 键值对 数量
*
* @param key
* @return
*/
public Long hashSize(String key) {
return redisTemplate.opsForHash().size(key);
}
//- - - - - - - - - - - - - - - - - - - - - list类型 - - - - - - - - - - - - - - - - - - - -
/**
* 在变量左边添加元素值
*
* @param key
* @param value
* @return
*/
public void leftPush(String key, Object value) {
redisTemplate.opsForList().leftPush(key, value);
}
/**
* 获取集合指定位置的值。
*
* @param key
* @param index
* @return
*/
public Object index(String key, long index) {
return redisTemplate.opsForList().index("list", 1);
}
/**
* 获取指定区间的值。
*
* @param key
* @param start
* @param end
* @return
*/
public List<Object> range(String key, long start, long end) {
return redisTemplate.opsForList().range(key, start, end);
}
/**
* 把最后一个参数值放到指定集合的第一个出现中间参数的前面,
* 如果中间参数值存在的话。
*
* @param key
* @param pivot
* @param value
* @return
*/
public void leftPush(String key, String pivot, String value) {
redisTemplate.opsForList().leftPush(key, pivot, value);
}
/**
* 向左边批量添加参数元素。
*
* @param key
* @param values
* @return
*/
public void leftPushAll(String key, String... values) {
// redisTemplate.opsForList().leftPushAll(key,"w","x","y");
redisTemplate.opsForList().leftPushAll(key, values);
}
/**
* 向集合最右边添加元素。
*
* @param key
* @param value
* @return
*/
public void leftPushAll(String key, String value) {
redisTemplate.opsForList().rightPush(key, value);
}
/**
* 向左边批量添加参数元素。
*
* @param key
* @param values
* @return
*/
public void rightPushAll(String key, String... values) {
//redisTemplate.opsForList().leftPushAll(key,"w","x","y");
redisTemplate.opsForList().rightPushAll(key, values);
}
/**
* 向已存在的集合中添加元素。
*
* @param key
* @param value
* @return
*/
public void rightPushIfPresent(String key, Object value) {
redisTemplate.opsForList().rightPushIfPresent(key, value);
}
/**
* 向已存在的集合中添加元素。
*
* @param key
* @return
*/
public long listLength(String key) {
return redisTemplate.opsForList().size(key);
}
/**
* 移除集合中的左边第一个元素。
*
* @param key
* @return
*/
public void leftPop(String key) {
redisTemplate.opsForList().leftPop(key);
}
/**
* 移除集合中左边的元素在等待的时间里,如果超过等待的时间仍没有元素则退出。
*
* @param key
* @return
*/
public void leftPop(String key, long timeout, TimeUnit unit) {
redisTemplate.opsForList().leftPop(key, timeout, unit);
}
/**
* 移除集合中右边的元素。
*
* @param key
* @return
*/
public void rightPop(String key) {
redisTemplate.opsForList().rightPop(key);
}
/**
* 移除集合中右边的元素在等待的时间里,如果超过等待的时间仍没有元素则退出。
*
* @param key
* @return
*/
public void rightPop(String key, long timeout, TimeUnit unit) {
redisTemplate.opsForList().rightPop(key, timeout, unit);
}
}
大家也可以通过阅读这个工具类,深入了解RedisTemplate的用法。使用的时候,只需要注入这个工具类就可以了。
redis的序列化也是我们在使用RedisTemplate的过程中需要注意的事情。上面的案例中,其实我们并没有特殊设置redis的序列化方式,那么它其实使用的是默认的序列化方式。RedisTemplate这个类的泛型是
那么什么是redis的序列化呢?就是我们把对象存入到redis中到底以什么方式存储的,可以是二进制数据,可以是xml也可以是json。比如说我们经常会将POJO 对象存储到 Redis 中,一般情况下会使用 JSON 方式序列化成字符串,存储到 Redis 中 。
Redis本身提供了一下一种序列化的方式:
如果我们存储的是String类型,默认使用的是StringRedisSerializer 这种序列化方式。如果我们存储的是对象,默认使用的是 JdkSerializationRedisSerializer,也就是Jdk的序列化方式(通过ObjectOutputStream和ObjectInputStream实现,缺点是我们无法直观看到存储的对象内容)。
我们可以根据redis操作的不同数据类型,设置对应的序列化方式。
通过观察RedisTemplate的源码我们就可以看出来,默认使用的是JdkSerializationRedisSerializer. 这种序列化最大的问题就是存入对象后,我们很难直观看到存储的内容,很不方便我们排查问题:
而一般我们最经常使用的对象序列化方式是: Jackson2JsonRedisSerializer
设置序列化方式的主要方法就是我们在配置类中,自己来创建RedisTemplate对象,并在创建的过程中指定对应的序列化方式。
package com.dhx.config;
import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.PropertyAccessor;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.lettuce.LettuceConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.RedisSerializer;
import org.springframework.data.redis.serializer.StringRedisSerializer;
@Configuration
public class RedisConfig {
@Bean
public RedisTemplate<String, Object> redisTemplate(LettuceConnectionFactory lettuceConnectionFactory) {
// 设置序列化
Jackson2JsonRedisSerializer<Object> jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer<Object>(
Object.class);
ObjectMapper om = new ObjectMapper();
om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
jackson2JsonRedisSerializer.setObjectMapper(om);
// 配置redisTemplate
RedisTemplate<String, Object> redisTemplate = new RedisTemplate<String, Object>();
redisTemplate.setConnectionFactory(lettuceConnectionFactory);
RedisSerializer<?> stringSerializer = new StringRedisSerializer();
redisTemplate.setKeySerializer(stringSerializer);// key序列化
redisTemplate.setValueSerializer(jackson2JsonRedisSerializer);// value序列化
redisTemplate.setHashKeySerializer(stringSerializer);// Hash key序列化
redisTemplate.setHashValueSerializer(jackson2JsonRedisSerializer);// Hash value序列化
redisTemplate.afterPropertiesSet();
return redisTemplate;
}
}
这样使用的时候,就会按照我们设置的json序列化方式进行存储,我们也可以在redis中查看内容的时候方便的查看到属性值。
参考资料:
Redis实现分布式锁的7种方案 - why414 - 博客园
很多场景中,需要使用分布式事务、分布式锁等技术来保证数据最终一致性。有的时候,我们需要保证某一方法同一时刻只能被一个线程执行。
在单机(单进程)环境中,JAVA提供了很多并发相关API,但在多机(多进程)环境中就无能为力了。
对于分布式锁,最好能够满足以下几点
可以保证在分布式部署的应用集群中,同一个方法在同一时间只能被一台机器上的一个线程执行
这把锁要是一把可重入锁(避免死锁)
这把锁最好是一把阻塞锁
有高可用的获取锁和释放锁功能
获取锁和释放锁的性能要好
分布式锁一般有三种实现方式:1. 数据库乐观锁;2. 基于Redis的分布式锁;3. 基于ZooKeeper的分布式锁。本篇文章主要介绍第二种方式。
一个完美的分布式锁,必须要满足如下四个条件:
锁的实现主要基于redis的SETNX命令
SETNX key value将 key 的值设为 value ,当且仅当 key 不存在。若给定的 key 已经存在,则 SETNX 不做任何动作。SETNX 是『SET if Not eXists』(如果不存在,则 SET)的简写。
返回值:设置成功,返回 1 。设置失败,返回 0 。
使用SETNX完成同步锁的流程及事项如下:
这篇文章中对于Redis中的锁的介绍还是比较全面的。
Redis实现分布式锁的8大坑!切记!-技术圈
原理探究:Redis分布式锁保姆级无死角分析
Redis锁的实现方式很多,到时多多少少都有点问题,相对比较完美的方案是使用lua脚本。最完美的解决方案就是使用Redission这个框架里边的RedissionRedLock。具体实现就不给出了,大家可以按照这个思路去查找相关资料。等到我什么时候有时间和精力了再回来补充一下。
分布式系统中,Session 共享有很多的解决方案,其中托管到缓存中应该是最常用的方案之一
传统Session的问题在于Session是由Web容器管理的,即一个Session只保存在一台服务器上,适合于单体应用。
随着架构不断地向微服务分布式集群演进,传统的Session在集群环境下就不能正常工作了。
例如,现在有3台Web服务器,客户端访问服务器通过负载均衡Nginx负载到某一台服务器上,用户此次的数据就保存到这台服务器Web容器中,如果用户下次请求被负载到其他服务器上,就获取不到之前保存的数据了。
这个时候就需要整个服务器集群共享同一个Session。为了解决所有服务器共享同一个Session的问题,Session就不能单独保存在自己的web容器中,而是保存在一个公共的会话仓库(Session Repository)中,所有服务器都访问同一个会话仓库,这样所有服务器的状态都一致了。
Spring Session 支持的会话仓库有Redis,MongoDB,JDBC,本章使用 Redis作为Spring Session的会话仓库。
Spring Session有以下优点
<dependency>
<groupId>org.springframework.sessiongroupId>
<artifactId>spring-session-data-redisartifactId>
dependency>
@Configuration
@EnableRedisHttpSession(maxInactiveIntervalInSeconds = 86400*30)
public class SessionConfig {
}
maxInactiveIntervalInSeconds: 设置 Session 失效时间,使用 Redis Session 之后,原 Spring Boot 的 server.session.timeout 属性不再生效。
好了,这样就配置好了,我们来测试一下
添加测试方法获取 sessionid
@RequestMapping("/uid")
String uid(HttpSession session) {
UUID uid = (UUID) session.getAttribute("uid");
if (uid == null) {
uid = UUID.randomUUID();
}
session.setAttribute("uid", uid);
return session.getId();
}
登录 Redis 输入 keys '*sessions*'
t<spring:session:sessions:db031986-8ecc-48d6-b471-b137a3ed6bc4
t(spring:session:expirations:1472976480000
其中 1472976480000 为失效时间,意思是这个时间后 Session 失效,db031986-8ecc-48d6-b471-b137a3ed6bc4
为 sessionId,登录 http://localhost:8080/uid
发现会一致,就说明 Session 已经在 Redis 里面进行有效的管理了。
其实就是按照上面的步骤在另一个项目中再次配置一次,启动后自动就进行了 Session 共享。