- 梯度提升机 (Gradient Boosting Machines, GBM)
ALGORITHM LOL
boosting集成学习机器学习
梯度提升机(GradientBoostingMachines,GBM)通俗易懂算法梯度提升机(GradientBoostingMachines,GBM)是一种集成学习算法,主要用于回归和分类问题。GBM本质上是通过训练一系列简单的模型(通常是决策树),然后将这些模型组合起来,从而提高整体预测性能。基本步骤初始模型:首先,我们用一个简单的模型(如一个常数值)作为预测模型,记为F0(x)F_0(x)F
- 鸿蒙开发(NEXT/API 12)【应用传输体验反馈】 网络加速服务
移动开发技术栈
鸿蒙开发harmonyos网络华为openharmony鸿蒙移动开发鸿蒙系统
场景介绍当应用传输体验发生变化时,应用将传输体验和传输的业务类型信息通过实时反馈接口传输给系统网络业务模块,系统网络业务模块进行精细化调度,实现网络加速。例如:视频类App播放过程中卡顿,将卡顿信息上报后,NetworkBoostKit将信息反馈给系统网络加速模块,该模块会记录播放卡顿信息,并根据当前网络情况,启用网络加速能力。接口说明接口名描述reportQoe(appQoe:AppQoe):v
- 十大机器学习算法-梯度提升决策树(GBDT)
zjwreal
机器学习GBDT机器学习梯度提升提升树梯度提升决策树
简介梯度提升决策树(GBDT)由于准确率高、训练快速等优点,被广泛应用到分类、回归合排序问题中。该算法是一种additive树模型,每棵树学习之前additive树模型的残差。许多研究者相继提出XGBoost、LightGBM等,又进一步提升了GBDT的性能。基本思想提升树-BoostingTree以决策树为基函数的提升方法称为提升树,其决策树可以是分类树或者回归树。决策树模型可以表示为决策树的加
- AdaBoost算法(AdbBoost Algorithm)—有监督学习方法、非概率模型、判别模型、非线性模型、非参数化模型、批量学习
剑海风云
ArtificialIntelligence人工智能机器学习提升方法AdaBoost
定义输入:训练数据集T={(x1,y1),(x2,y2),⋯ ,(xN,yN)}T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\}T={(x1,y1),(x2,y2),⋯,(xN,yN)},其中,xi∈χ⊆Rn,yi∈y={−1,+1}x_i\in\chi\subseteqR^n,y_i\in{\tty}=\{-1,+1\}xi∈χ⊆Rn,yi∈y={−1,+1}
- cmake介绍(八)--cmake的高级特性
小蘑菇二号
cmake
目录1.自定义CMake模块和脚本自定义模块示例:创建自定义模块2.构建配置和目标多配置生成器示例:使用VisualStudio生成器定义多个构建目标示例:定义多个目标3.高级查找和配置灵活地查找包示例:查找和配置Boost库配置构建选项示例:配置构建选项4.生成自定义构建步骤添加自定义命令示例:添加自定义命令添加自定义目标示例:添加自定义目标5.跨平台和交叉编译支持不同平台示例:配置跨平台编译交
- 《机器学习》—— XGBoost(xgb.XGBClassifier) 分类器
张小生180
机器学习人工智能
文章目录一、XGBoost分类器的介绍二、XGBoost(xgb.XGBClassifier)分类器与随机森林分类器(RandomForestClassifier)的区别三、XGBoost(xgb.XGBClassifier)分类器代码使用示例一、XGBoost分类器的介绍XGBoost分类器是一种基于梯度提升决策树(GradientBoostingDecisionTree,GBDT)的集成学习算
- .NET Core —如何使用Redis缓存提高应用程序性能
weixin_26737625
redisjava缓存pythonmysql
Redisisaverypowerfuldistributedcachingengineandoffersverylowlatencykey-valuepaircaching.Ifusedintherightbusinesscontext,Rediscansignificantlyboostapplicationperformance.Inthisarticlewewilldoawalkthrou
- Python处理大数据,如何提高处理速度
RS&
#pythonpython大数据pandas
Python处理大数据,如何提高处理速度?一、利用大数据分析工具Dask:https://dask.org/Dask简介:Dask支持Pandas的DataFrame和NumpyArray的数据结构,并且既可在本地计算机上运行,也可以扩展到在集群上运行。Dask可支持pandas、Numpy、Sklearn、XGBoost、XArray、RAPIDS等等。原理及使用方法:https://blog.
- 2024 数学建模国赛 C 题模型及算法(无废话版)
不染53
数学建模数学建模算法python
目录写在开始需要掌握的数学模型/算法评价体系/评价类问题时间序列处理数据降维聚类问题(无监督)分类问题(有监督)集成学习(Bagging/Boosting)回归问题关联分析统计学方法/统计模型智能优化算法需要掌握的Python专业库需要掌握的软件/工具写在开始本人获2023年数学建模国赛C题国家级一等奖,备赛期间专攻C题。本文总结了在备赛期间总结的模型和算法,足以应对90%国赛C题中涉及到的问题。
- 英伟达A100算力卡性能及应用
算力资源比较多
算力英伟达大模型人工智能gpu算力语言模型大数据推荐算法
英伟达A100是一款高性能计算卡,基于英伟达Ampere架构,专为数据中心和高性能计算领域设计。以下是关于A100的性能参数及应用的详细介绍:性能参数架构与制程:架构:Ampere制程:7纳米核心与频率:CUDA核心数:6912个Tensor核心数:432个Boost时钟频率:1.41GHz性能:FP32性能:19.5TFLOPSFP64性能:9.7TFLOPSTensor性能:624.6TFLO
- 2024年Python最新Python爬虫教程-新浪微博分布式爬虫分享(2)
2401_84584682
程序员python爬虫新浪微博
开发语言:Python2.7开发环境:64位Windows8系统,4G内存,i7-3612QM处理器。数据库:MongoDB3.2.0、Redis3.0.501(Python编辑器:Pycharm;MongoDB管理工具:MongoBooster;Redis管理工具:RedisStudio)爬虫框架使用Scrapy,使用scrapy_redis和Redis实现分布式。分布式中有一台机充当Maste
- XGBoost调参demo(Python)
妄念驱动
机器学习算法python机器学习XGBoostpython
XGBoost我们用的是保险公司的一份数据#各种库importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.linear_modelimportLogisticRegressionfromsklearn.ensembleimportRandomForestClassifierfromsklearn.metricsi
- 【python】Python实现XGBoost算法的详细理论讲解与应用实战
景天科技苑
python轻松入门基础语法到高阶实战教学python算法开发语言XGBoost算法XGBoostpython实现XGBoost人工智能
✨✨欢迎大家来到景天科技苑✨✨养成好习惯,先赞后看哦~作者简介:景天科技苑《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。《博客》:Python全栈,PyQt5和Tkinter桌面开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi,flask等框架,云原生K
- VScode C++ 一键注释
东半球第一攻城狮
vscodec++ide
1.注释:首选选中要注释的部分;intmain(){usingnamespacestd;cout>weight;stringgain="A10%increaseraises";stringwt=boost::lexical_cast(weight);gain=gain+wt+"to";//stringoperator()weight=1.1*weight;gain=gain+boost::lexi
- mac版QQ聊天信息备份与导出方法
iHTCboy
前言最近,我司终于更换新电脑的计划落实啦!!!Macmini3.0GHz双核IntelCorei7处理器(TurboBoost高达3.5GHz)16GB1600MHzLPDDR3SDRAM1TB融合硬盘IntelIrisGraphics图形处理器非常值的可贺!然而,就是新电脑,一切都是新!一切都是白!!非常多工具的数据需要迁移,开发环境需要配置,最近也打算总结一下新电脑配置方面的文章,作为自己备份
- 基于Python的机器学习系列(18):梯度提升分类(Gradient Boosting Classification)
会飞的Anthony
信息系统机器学习人工智能机器学习python分类
简介梯度提升(GradientBoosting)是一种集成学习方法,通过逐步添加新的预测器来改进模型。在回归问题中,我们使用梯度来最小化残差。在分类问题中,我们可以利用梯度提升来进行二分类或多分类任务。与回归不同,分类问题需要使用如softmax这样的概率模型来处理类别标签。梯度提升分类的工作原理梯度提升分类的基本步骤与回归类似,但在分类任务中,我们使用概率模型来处理预测结果:初始化模型:选择一个
- 基于Python的机器学习系列(17):梯度提升回归(Gradient Boosting Regression)
会飞的Anthony
人工智能信息系统机器学习机器学习python回归
简介梯度提升(GradientBoosting)是一种强大的集成学习方法,类似于AdaBoost,但与其不同的是,梯度提升通过在每一步添加新的预测器来减少前一步预测器的残差。这种方法通过逐步改进模型,能够有效提高预测准确性。梯度提升回归的工作原理在梯度提升回归中,我们逐步添加预测器来修正模型的残差。以下是梯度提升的基本步骤:初始化模型:选择一个初始预测器h0(x),计算该预测器的预测值。计算残差:
- 基于Python的机器学习系列(16):扩展 - AdaBoost
会飞的Anthony
信息系统机器学习人工智能python机器学习开发语言
简介在本篇中,我们将扩展之前的AdaBoost算法实现,深入探索其细节并进行一些修改。我们将重点修复代码中的潜在问题,并对AdaBoost的实现进行一些调整,以提高其准确性和可用性。1.修复Alpha计算中的问题在AdaBoost中,如果分类器的错误率e为0,则计算出的权重α将是未定义的。为了解决这个问题,我们可以在计算过程中向分母中添加一个非常小的值,以避免除零错误。2.调整学习率sklearn
- 基于CNN-BiLSTM-Adaboost风电功率预测研究(Matlab代码实现)
创新优化代码学习
cnnmatlab人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、研究方法1.数据准备与预处理2.CNN特征提取3.BiLSTM序列建模4.Adaboost集成学习5.模型训练与评估三、研究优势四、未来展望2运行结果3参考文献4Matlab代码、数据⛳️赠与读者做科研,涉及到一个深在的思想系
- SD3337C 恒流Boost DC/DC转换器的白色LED驱动器芯片IC
奥科迪科技13798477800
单片机嵌入式硬件
一般描述SD3337C是一款升压型DC/DC转换器,具有恒定电流,可驱动白色LED或类似器件。该器件可以从锂离子电池驱动多达八个串联的LED。LED电流由外部电阻器(RsET)设置,并由反馈(FB)电压(典型值:200mV)直接调节,该电压跨接在外部电阻器RsET上。为了确保操作过程中的最大安全性,该输出具有集成的过压保护功能,可在某些故障条件下防止设备损坏。OVP电压可以通过两个外部电阻器进行编
- hiphop-php【未能成功编译YII】
zhengdl126
linux运维php运维git
==================测试环境redhat6.064bitcmake2.6istheminimumversiong++/gcc4.3istheminimumversionBoost1.37istheminimumversionlibicu4.2istheminimumversiontbbIntel'sThreadBuildingBlocks===64bit====https://gi
- 【KELM回归预测】基于麻雀算法优化核极限学习SSA-KELM-Adaboost实现风电回归预测附matlab代码
天天酷科研
粉丝福利算法回归学习SSA-KELM-Ada
以下是使用麻雀算法优化核极限学习机(SSA-KELM)和Adaboost算法实现风电回归预测的MATLAB代码示例:matlab复制%导入风电数据load(‘wind_data.mat’);%假设数据存储在wind_data.mat文件中X=wind_data(:,1:end-1);%输入特征Y=wind_data(:,end);%输出标签%数据归一化X=normalize(X,‘range’);
- ZCC5429 异步升压芯片
ZCWC123
社交电子
一、产品综述ZCC5429芯片是一款自动调频、最高600KHz工作频率、高效率、宽输入电压范围的电流模式异步升压(BOOST)芯片,且可调输入限流功能。用户可灵活地通过外部补偿建立动态环路,获得在所有条件下最优瞬态性能。ZCC5429芯片还包括欠压锁存,过流保护和过温保护,以防止在输出过载时产生损害。ZCC5429采用ESOP8小型封装,外围电路简单,功率管外置,可根据实际使用情况,实现更宽功率范
- ZCC5429 异步升压芯片
ZCWC123
社交电子
一、产品综述ZCC5429芯片是一款自动调频、最高600KHz工作频率、高效率、宽输入电压范围的电流模式异步升压(BOOST)芯片,且可调输入限流功能。用户可灵活地通过外部补偿建立动态环路,获得在所有条件下最优瞬态性能。ZCC5429芯片还包括欠压锁存,过流保护和过温保护,以防止在输出过载时产生损害。ZCC5429采用ESOP8小型封装,外围电路简单,功率管外置,可根据实际使用情况,实现更宽功率范
- ZCC5429-宽输入电压异步升压芯
HPT_Lt
嵌入式硬件
一、产品综述ZCC5429芯片是一款自动调频、最高600KHz工作频率、高效率、宽输入电压范围的电流模式异步升压(BOOST)芯片,且可调输入限流功能。用户可灵活地通过外部补偿建立动态环路,获得在所有条件下最优瞬态性能。ZCC5429芯片还包括欠压锁存,过流保护和过温保护,以防止在输出过载时产生损害。ZCC5429采用ESOP8小型封装,外围电路简单,功率管外置,可根据实际使用情况,实现更宽功率范
- 3.0 V-22V 宽输入电压,高效率异步升压芯片-ZCC5429
HPT_Lt
嵌入式硬件
一、产品综述ZCC5429芯片是一款自动调频、最高600KHz工作频率、高效率、宽输入电压范围的电流模式异步升压(BOOST)芯片,且可调输入限流功能。用户可灵活地通过外部补偿建立动态环路,获得在所有条件下最优瞬态性能。ZCC5429芯片还包括欠压锁存,过流保护和过温保护,以防止在输出过载时产生损害。ZCC5429采用ESOP8小型封装,外围电路简单,功率管外置,可根据实际使用情况,实现更宽功率范
- 每天一个数据分析题(五百零五)- 提升方法
跟着紫枫学姐学CDA
数据分析题库数据分析
提升方法(Boosting),是一种可以用来减小监督式学习中偏差的机器学习算法。基于Boosting的集成学习,其代表算法不包括?A.AdaboostB.GBDTC.XGBOOSTD.随机森林数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据
- 每天一个数据分析题(五百零六)- 装袋方法
跟着紫枫学姐学CDA
数据分析数据挖掘
装袋方法(bagging)也叫做bootstrapaggregating,是在原始数据集有放回地重采样S次后得到新数据集的一种技术,其代表算法有?A.AdaboostB.GBDTC.XGBOOSTD.随机森林数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专
- 随机森林(Random Forest)VS 提升树(Boosting Trees)
高大黑白涂鸦
随机森林boosting算法机器学习人工智能
随机森林(RandomForest)和提升树(BoostingTrees)都是常见的机器学习算法,它们都基于决策树,但使用的策略和目标不同。随机森林(RandomForest)通俗的类比:想象你有一个班级里的多位老师(决策树),你让他们每个人都独立地给出意见(预测)。每个老师的意见可能不完全一致,因为他们对问题的理解和方法不同。然后,你把所有老师的意见汇总,得到一个“班级意见”的结果。优点:减少过
- 英伟达A100、A800、H100、H800、V100以及RTX 4090的详细性能参数对比
算力资源比较多
算力英伟达H100gpu算力大数据人工智能语言模型
英伟达A100、A800、H100、H800、V100以及RTX4090的详细性能参数对比:英伟达A100架构与制程:架构:Ampere制程:7纳米核心与频率:CUDA核心数:6912个Tensor核心数:432个Boost时钟频率:1.41GHz性能:FP32性能:19.5TFLOPSFP64性能:9.7TFLOPSTensor性能:624.6TFLOPS内存:显存容量:提供40GB和80GBH
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号