- ——当机器开始"思考",人类终于读懂了自己的大脑
人工智能机器学习
第一层突破:AI让我们看见"思维的源代码"想象一下,你正在教ChatGPT写诗——当它从"枯藤老树昏鸦"的堆砌,突然产出"月光在二进制河流里流淌"的句子时,这不仅是算法的胜利,更是一面照向人类思维的魔镜。科学家发现,AI学习语言的方式竟与婴儿惊人相似:✅模式捕捉:像人类从环境声音中提取词汇✅联想迭代:用已知概念嫁接新知识(比如用"电"理解"闪电网络")✅创造性错误:AI的"幻觉"对应人脑的直觉跳跃
- python 支持向量机回归_深入浅出python机器学习---支持向量机SVM 笔记0114-2020
weixin_39864387
python支持向量机回归
题前故事:小D最近也交了一个女朋友,但是这个女孩好像非常情绪化,喜怒无常,让小D捉摸不透,小D女朋友的情绪完全不是“线性可分”的,于是小D想到了SVM算法,也就是大名鼎鼎的一一支持向量机。支持向量机理解引入首先需要知道线性可分和线性不可分的概念我们提取样本特征是“是否有妹子”和“是否有好吃的”这两项的时候,能够很容易用图中的直线把男生的情绪分成“开心”和“不开心”两类,这种情况下我们说样本是线性可
- “面面俱到”!人脸活体检测让应用告别假面攻击
harmonyos
随着人脸识别技术在金融、医疗等多个领域的加速落地,网络安全、信息泄露等问题愈为突出,用户对应用稳定性和安全性的要求也更为严格。HarmonyOSSDK场景化视觉服务(VisionKit)提供人脸动作活体检测能力,增强对于非活体攻击的防御能力和活体通过率。在投资理财、在线支付等高风险金融服务场景中,通过检测用户的组合动作等来验证用户为真实活体操作,抵御攻击,提高安全性,降低业务风险,全方位保障用户体
- Android Studio学习随笔-模拟耗时操作(sleep)
weixin_30835923
移动开发
AndroidStudio学习随笔-模拟耗时操作(sleep)在这里我申明一点,因为我是挂着VPN去YOUTOBE看的尚学堂的高明鑫老师讲的Android基础学习视频,有些东西他没有讲,而我也没办法,只能等两个星期后学校请老师来的时候进行询问,当然我也会将一些问题发布在博客里,希望有一些粗腿可以让我抱一下在此次随笔中,我将讲一下用sleep进行的耗时操作,由于高老师在视频中也是一掠而过,我也只能讲
- [C/C++]滑动窗口专题/最小覆盖子串/字符串排列/找到字符串中所有字母异位词/无重复字符的最长子串/串联所有单词的子串
消失男孩
热门面试题
以下内容节选自公众号:labuladong《我写了套框架,把滑动窗口算法变成了默写题》,传送门在最下方参考链接1。我觉得非常牛逼,在此记录,方便复习。1、框架2、LeetCode76:最小覆盖子串3、LeetCode567:字符串排列4、LeetCode438:找到字符串中所有字母异位词5、LeetCode3:无重复字符的最长子串6、LeetCode30:串联所有单词的子串1、框架以下框架中,遇到
- 大模型时代,为什么模型都是多少B?
人工智能大模型llm
大模型时代,为什么模型都是多少B?前言在当今这个被大模型技术重塑的时代,无论是在科技新闻的报道中,还是专业技术论坛的讨论里,我们常常会看到诸如“某模型是70B”“13B模型表现出色”这样的表述。这里的“B”究竟代表着什么?为何模型规模要用这样的度量方式来呈现?它对于模型的性能、应用乃至整个大模型技术发展格局又有着怎样的意义?带着这些疑问,让我们一同深入探索大模型规模背后的奥秘。模型规模中的“B”是
- a16z:一文梳理 7 种代币分类,如何区分网络代币与公司支持代币?
web3区块链比特币
作者:Techub精选编译撰文:MilesJennings、ScottDukeKominers和EddyLazzarin,a16z编译:Glendon,TechubNews随着基于代币的网络模型的活动日益活跃和创新,开发者们正在思考如何区分不同类型的代币——以及哪种代币最适合他们的业务。与此同时,消费者和政策制定者也正在尝试更好地了解区块链代币在应用中的角色和风险。为了帮助梳理代币类别,本文提供了
- 7 款热门项目管理工具深度剖析:Gitee 的卓越优势与多元选择
在当今竞争激烈的商业环境中,高效的项目管理是团队成功的关键。合适的项目管理工具能显著提升协作效率、优化资源分配并确保项目按时交付。本文将为您详细介绍7款主流项目管理工具,着重推荐功能强大的Gitee,帮助您根据团队需求做出最佳选择。一、Gitee(码云)——本土创新的项目管理先锋适用场景:软件开发全流程、开源项目协作、企业数字化转型核心优势:极致本地化体验服务器位于国内,代码操作响应速度极快,彻底
- 【人工智能】随机森林的智慧:集成学习的理论与实践
蒙娜丽宁
人工智能人工智能随机森林集成学习
随机森林(RandomForest)是一种强大的集成学习算法,通过构建多棵决策树并结合投票或平均预测提升模型性能。本文深入探讨了随机森林的理论基础,包括决策树的构建、Bagging方法和特征随机选择机制,并通过LaTeX公式推导其偏差-方差分解和误差分析。接着,我们详细描述了随机森林的算法流程,分析其在分类和回归任务中的适用性。文章还通过实验对比随机森林与单一决策树及其他算法(如SVM)的性能,探
- ts学习笔记
江小年
go笔记
TypeScript本文引用枫枫知道不做商用,仅用于学习枫枫知道可以购买枫枫知道的课程安装node建议下载长期维护版安装之后把node加入环境变量命令行输入node-vnpm-vnpm就是node里面安装第三方包的工具,相当于pip安装tsc它的作用就是将ts文件编译为js文件//.ts=>.jsnpmitypescript-gtsc-vtsc--init//生成一个json文件tsc//会编译项
- Gin学习笔记
江小年
gogin学习笔记
RESTfulAPI以前写网站get/userpost/create_userpost/update_userpost/delete_userRESTfulAPIget/user获取post/user新建put/user更新patch/user更新部分delete/user删除REST与技术无关,代表的是一种软件架构风格,只要API程序遵循了REST风格,那就可以称其为RESTfulAPIREST
- 网安入门第四篇 MISC中常见的加密算法 篇章一
网络安全工程师教学
网络服务器linux开发语言运维大数据安全
目录DES算法背景:安全性:加密流程:RSA加密算法背景:安全性:加密原理:DES算法背景:数据加密标准(DES,DataEncryptionStandard)是一种使用密钥加密的块密码,1976年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),随后在国际上广泛流传开来。它基于使用56位密钥的对称算法。这个算法因为包含一些机密设计元素,相对短的密钥长度以及怀疑内含美国国家安全局(NS
- 深度学习在SSVEP信号分类中的应用分析
自由的晚风
深度学习分类人工智能
目录前言1.SSVEP信号分类的处理流程2.模型输入和数据预处理3.模型结构设计3.1卷积神经网络(CNN)3.2长短期记忆网络(LSTM)4.训练方法与激活函数5.性能评估与挑战6.未来方向前言随着脑机接口(BCI)技术的发展,SSVEP(稳态视觉诱发电位)因其高信息传输速率和短训练时间而成为最受欢迎的BCI范式之一。近年来,深度学习方法在SSVEP信号分类中取得了显著的成果。本文通过对31个深
- 如何使用staruml创建时序图
forjav
javastaruml时序图
说明:staruml版本:5.0.2.15701、打开staruml2、添加模型,右键Untitled=>add=>model=>取名myuml(可以随意取)3、添加图表,右键myuml=>AddDiagram=>SequenceDiagram4、重命名图表5、添加参与者actor,右键myuml=>add=>actor=>重命名为person6、添加对象,右键mysd=>Add=>Object=
- 炒股开户资金要求是多少?不同证券公司是否有区别?
股票程序化交易接口
量化交易股票API接口Python股票量化交易炒股开户资金要求证券公司股票量化接口股票API接口
Python股票接口实现查询账户,提交订单,自动交易(1)Python股票程序交易接口查账,提交订单,自动交易(2)股票量化,Python炒股,CSDN交流社区>>>开户资金的组成部分炒股开户的资金要求包含多个方面。首先是用于购买股票的资金,这是最直接的部分。投资者需要有一定资金才能买入股票。其次是可能存在的账户管理费等费用的预留资金。有些证券公司会收取一定的账户管理费用,如果没有预留这部分资金,
- UML面向对象建模与设计——笔记(二)
忧愁的awe
uml面向对象
UML面向对象建模与设计(第二版)笔记——第二部分:分析与设计开发过程1系统构思2分析3系统设计4类设计5实现6测试7培训8部署9开发生命周期系统构思1阐释概念2准备问题陈述系统分析1领域分析1创建领域类模型2分析领域状态模型3领域交互模型2应用分析1应用交互模型2应用类模型3应用状态模型系统设计类设计1填补空白区2实现用例3设计算法1选择算法2选择数据结构3定义内部类的操作4把操作分配给个类4向
- r99950X3D参数 锐龙r99950X3D性能怎么样 r9 9950X3D相当于什么水平
2501_90583960
其他
锐龙r99950X3D采用Zen5架构和4纳米生产工艺16核心32线程基础频率为4.3GHz,最高加速频率5.7GHz热设计功耗(TDP)为170W锐龙r99950X3D组装电脑怎么搭配更合适这些点很重要http://www.adiannao.cn/du
- 网络安全入门教程(非常详细)从零基础入门到精通,看完这一篇就够了
白帽黑客坤哥
web安全网络安全网络安全物联网
href="https://csdnimg.cn/release/blogv2/dist/mdeditor/css/editerView/kdoc_html_views-1a98987dfd.css"rel="stylesheet"/>href="https://csdnimg.cn/release/blogv2/dist/mdeditor/css/editerView/ck_htmledit_v
- Unity入门学习笔记(Day01)
Alika-snowr
unity学习unity学习笔记
一.认识unity工作面板1.1.projectwindow(项目面板)显示当前项目中的所有文件和目录,包含了项目里面所有的资源文件1.2.consolewindow(输出面板)显示当前游戏开发中生成的警告错误1.3.hierarchywindow(层次面板)也称为场景面板,显示当前的场景中所有游戏游戏对象,并显示父子级关系;我们说开发的游戏是由一个一个的场景组成的(类型与拍戏的场次场景)游戏物体
- Etcd学习笔记
江小年
etcd学习笔记
etcd的介绍与安装主要用于微服务的配置中心和服务发现,数据可靠性比redis更强在对外api的应用中,如何知道order服务的rpc地址?如果服务的ip地址变化了怎么办?在传统的配置文件模式,修改配置文件,应用程序是需要重启才能解决的,所以引入etcdwindows安装etcd-v3.5.16-windows-amd64.zipdocker安装dockerrun--nameetcd-d-p237
- 一个实例用全创建型模式-优化(冗余消除)
科学的发展-只不过是读大自然写的代码
java算法前端
1.关联链接上一篇:一个实例用全创建型模式-CSDN博客目录:《一个实例讲完23种设计模式》2.内容当前:单件+抽象工厂+创建者+工厂方法+优化需求:坦克大战创建两种坦克坦克类型射程速度b7070米时/70公里b5050米时/50公里设计说明1.抽象工厂承担了创建部件的任务2.创建者承担了讲部件组装的任务3.工厂方法类相当于创建者模式的导演,但是他是并未给用户提供选择创建者的接口。而是通过自己的多
- 使用JAVA上抓取Socket服务端和客户端通信TCP数据包
螺旋大西瓜
JAVAjavatcpip
使用Java抓取Socket通信TCP数据包使用WireShark默认使用的是winpcap去抓本地环回的数据包,需要安装npcap再在Wireshark选择本地环回的网卡抓包在Java-Socket中,在本地Socket不使用127网段无法与服务端进行通信。但是常用的Jcap和Pcap4j都是依据libpcap/winpcap实现的。但是这俩又抓不到本地127网段的数据包。所以选择在局域网中使用
- C语言------指针从入门到精通
Oracle_666
c语言开发语言
第一部分:前言:本篇文章主要划分为两大部分:第一部分适合零基础的同学,主要学习了解指针的概念,对指针大概有个概念。如果你已经有基础,即可跳过第一部分的内容。第二部分主要是分解指针的实现逻辑,通过19个例子,再结合代码公式把不同类型的指针及指针的应用详细解析。指针是干啥用的?指针是一个特殊的变量,它里面存储的数值被解释成为内存里的一个地址。要想了解一个指针就需要理解指针的四方面的内容:指针的类型、指
- PSPNet在图像超分辨率中的应用
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
PSPNet在图像超分辨率中的应用1.背景介绍图像超分辨率(ImageSuper-Resolution,ISR)是计算机视觉领域的一个重要研究方向,旨在从低分辨率图像中重建高分辨率图像。传统的ISR方法主要基于插值算法,如双线性插值、双三次插值等,但这些方法往往无法恢复图像的高频细节信息。近年来,随着深度学习的发展,基于卷积神经网络(ConvolutionalNeuralNetwork,CNN)的
- 斯坦福UE4 + C++课程学习记录 9:蓝图-简易开关
Surkea
C+++UEue4ue5游戏引擎c++学习
目录1.前言2.创建蓝图类3.改变把手角度4.打开宝箱UE中的蓝图是一种基于C++的可视化编程系统,它将大量常用的底层代码接口暴露出来,方便开发者在UE中快速调用,其可视化的呈现方式让那些不专攻编程的人员(如设计、美工、策划等)也能快速上手使用。从程序开发的角度,学习蓝图可以方便开发中的很多环节;从业务的角度,掌握蓝图也有利于开发和其他环节的同事进行交流。本部分的第一个示例,是使用操纵杆开关控制宝
- 数据分析面试全攻略:业务分析能力篇
代码CC
数据分析(包括各种面试题)面试数据分析面试pythonsql
前言:业务分析能力考察重点在数据分析岗位面试中,业务分析能力是区分初级与中高级候选人的核心要素。本篇将从指标设计、异常分析、用户增长三大模块,解析业务分析能力提升路径。一、指标设计:用数据定义业务价值1.1用户留存分析体系留存率计算模型定义公式:次日留存率=第2天活跃用户数/首日新增用户数×100%7日留存率=第8天活跃用户数/首日新增用户数×100%SQL计算模板:WITHfirst_login
- 比特币,区块链及相关概念简介(一)
湖光秋色
区块链区块链比特币去中心化
目录什么是比特币比特币用来交易什么呢应用场景和黄金的关系相似之处:不同之处:如果是交易才会有比特币奖励那第一个持有者是怎么获取的呢又是怎么交易的呢其他加密货币该系列文章链接以下内容结合了chatgpt3.5以及网络文章。用于学习记录。简介:介绍了比特币的概念,比特币的交易对象,比特币的应用场景,以及和黄金的关系;其他加密货币等。什么是比特币比特币是一种数字货币,也是全球第一个去中心化的加密货币。它
- 基于文本特征的微博谣言检测
机器懒得学习
人工智能大数据图像处理计算机视觉
随着社交媒体的普及,微博等平台成为了信息传播的重要渠道。然而,虚假信息和谣言的传播也带来了严重的社会问题。因此,自动化的谣言检测技术变得尤为重要。本文将介绍如何基于文本特征,使用深度学习模型(如LSTM、CNN)和传统机器学习模型(如SVM)来实现微博谣言检测,并对这些模型的性能进行比较。完整项目地址:基于文本特征的微博谣言检测1.项目概述本项目旨在通过分析微博文本内容,自动检测其中的谣言。系统通
- 深入探索C++标准库与模板元编程的奥秘与实用技巧
爱编程的Loren
活动文章活动文章
一、引言 侯捷老师作为C++领域的权威专家,其课程不仅深入浅出地讲解了C++的基础知识,更引领我们探索了C++的深层奥秘。本文将围绕侯捷老师的C++系列课程,分享对C++标准库及模板元编程的深入理解与学习心得。 二、C++标准库的强大之处 在侯捷老师的课程中,我们深入了解了C++标准库的强大与实用。标准库中的算法、容器、迭代器等,为我们的编程工作提供了极大的便利。特别是STL(Stand
- 使用服务器搭建无门槛ChatGPT WEB应用LobeChat
莱卡云(Lcayun)
服务器chatgpt前端网络linux运维
一、服务器实例配置实例选型推荐配置:2核4GB内存,保障AI推理和并发访问的流畅性67。操作系统:选择Ubuntu22.04LTS,适配Docker环境与LobeChat依赖库23。安全组规则:开放以下端口:3210(LobeChat默认Web端口)SSH(22)(用于远程管理)25。二、Docker环境与LobeChat部署安装Docker与Compose
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号