- 【Java】已解决java.lang.NoClassDefFoundError异常
屿小夏
java开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 介绍 TensorFlow 的基本概念和使用场景。
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3经验分享
TensorFlow是一个由谷歌开发的开源机器学习框架,广泛应用于深度学习领域。它提供了一个灵活的平台,可以用于构建各种机器学习模型,包括神经网络。TensorFlow的基本概念和使用场景如下:张量(Tensor):TensorFlow中的基本数据结构就是张量,可以简单理解为多维数组。张量可以是标量(0维张量)、向量(1维张量)、矩阵(2维张量)等。在TensorFlow中,所有数据都以张量的形式
- 深度学习中N维数组的介绍
帅维维
深度学习深度学习人工智能
N维数组是机器学习和神经网络的主要数据结构。下面是N维数组的实例:0维数组(标量):通常表示一个类别。1维数组(向量):通常表示一个特征向量。二维数组(矩阵):通常表示一个样本--特征矩阵。三维矩阵:通常表示RGB图片(宽*高*通道)。四维矩阵:通常表示一个RGB图片批量(批量大小*宽*高*通道)。五维矩阵:通常表示一个视频批量(批量大小*时间*宽*高*通道)。
- 机器学习在地图制图学中的应用
地图模型炼丹师
机器学习人工智能
原文链接:https://www.tandfonline.com/doi/full/10.1080/15230406.2023.2295948#abstractCSDN/2025/Machinelearningincartography.pdfatmain·keykeywu2048/CSDN·GitHub核心内容本文是《制图学与地理信息科学》特刊的扩展评论,系统探讨了机器学习(尤其是深度学习)在制
- 机器学习大纲总结
excellent121
机器学习人工智能
一、概念1.人工智能人工智能包含机器学习,机器学习包含深度学习2.机器学习机器学习是实现人工智能的一种途径机器学习=传统机器学习+深度学习3.深度学习深度学习是由机器学习的一种方法发展而来4.发展三要素数据、算法、算力5.发展史5.1符号主义(20世纪50-70):专家系统占主导1950年:图灵设计国际象棋程序1962年:IBMArthurSamuel的跳棋程序战胜人类高手(人工智能第一次浪潮)5
- 人工智能与深度学习的应用案例:从技术原理到实践创新
accurater
人工智能深度学习科技
第一章引言人工智能(AI)作为21世纪最具变革性的技术之一,正通过深度学习(DeepLearning)等核心技术推动各行业的智能化进程。从计算机视觉到自然语言处理,从医疗诊断到工业制造,深度学习通过模拟人脑神经网络的层次化学习机制,实现了对复杂数据的高效分析与决策。本文结合前沿技术框架与行业应用案例,探讨深度学习的核心原理及其在多个领域的实践路径,并附代码实例以增强技术理解。第二章深度学习的技术基
- 深度学习模型:原理、应用与代码实践
accurater
c++算法笔记人工智能深度学习
引言深度学习作为人工智能的核心技术,已在图像识别、自然语言处理、代码生成等领域取得突破性进展。其核心在于通过多层神经网络自动提取数据特征,解决复杂任务。本文将从基础理论、模型架构、优化策略、应用场景及挑战等多个维度展开,结合代码示例,系统解析深度学习模型的技术脉络与实践方法。一、深度学习基础理论神经网络基本原理神经网络由输入层、隐藏层和输出层构成,通过反向传播算法调整权重。以全连接网络为例,前向传
- 【TVM 教程】使用元组输入(Tuple Inputs)进行计算和归约
编译器编程后端人工智能深度学习
ApacheTVM是一个端到端的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:ZihengJiang若要在单个循环中计算具有相同shape的多个输出,或执行多个值的归约,例如argmax。这些问题可以通过元组输入来解决。本教程介绍了TVM中元组输入的用法。from__future__importabsolut
- 深度解构:DeepSeek大模型架构与前沿应用的未来探秘
威哥说编程
架构ai
随着人工智能(AI)领域的快速发展,深度学习模型逐渐向着更加复杂和强大的方向演进。在这一波技术浪潮中,DeepSeek大模型作为一个重要代表,凭借其卓越的表现和广泛的应用,正在重新定义我们对AI的认知和期待。本篇文章将从架构到应用,全面解析DeepSeek大模型的技术特点,探索其在未来可能带来的创新与变革。1.DeepSeek大模型的架构设计DeepSeek大模型采用的是基于Transformer
- 深度学习系列71:表格检测和识别
IE06
深度学习系列深度学习人工智能
1.pdf处理如果是可编辑的pdf格式,那么可以直接用pdfplumber进行处理:importpdfplumberimportpandasaspdwithpdfplumber.open("中新科技:2015年年度报告摘要.PDF")aspdf:page=pdf.pages[1]#第一页的信息text=page.extract_text()print(text)table=page.extract
- 【实战项目】Python 手撕一个基于最新端到端大模型的语音聊天系统
kakaZhui
解码前沿多模态大模型:认知分析和工业级实战python开发语言AIGC人工智能chatgpt
写在前面:为什么需要端到端语音交互近年来,随着深度学习技术的飞速发展,语音交互技术取得了显著的进步。从智能音箱到虚拟助手,语音交互已经渗透到我们生活的方方面面。然而,传统的语音交互系统往往采用“语音识别(ASR)-自然语言理解(NLU)-对话管理(DM)-自然语言生成(NLG)-语音合成(TTS)”的级联式架构,这种架构存在着诸多弊端,如:错误累积:每个模块的错误都会传递到下一个模块,导致最终结果
- 体育数据分析:竞技表现优化与商业价值挖掘的技术范式
Tina0898
数据分析数据挖掘
体育数据分析作为一门交叉学科,正在重塑现代体育产业的发展轨迹。通过多源数据采集、机器学习建模和商业智能分析,体育数据分析已经形成了完整的技术体系和应用生态。本文将深入探讨体育数据分析的技术架构、应用场景和商业价值。一、数据采集与处理技术架构现代体育数据采集系统采用分布式架构,集成了计算机视觉、惯性测量单元(IMU)和生物电传感器等多模态数据源。计算机视觉系统通过高速摄像机和深度学习算法,可实现运动
- PyTorch 深度学习快速入门教程
有人给我介绍对象吗
AI论文写作深度学习pytorch人工智能
PyTorch深度学习快速入门教程PyTorch是一个灵活且易用的深度学习框架,支持动态图计算,广泛用于学术研究和工业应用。本教程将带你快速掌握PyTorch的基本用法,涵盖张量(Tensor)操作、自动求导(Autograd)、构建神经网络以及模型训练。1.安装PyTorch在终端或命令行中运行以下命令安装PyTorch:pipinstalltorchtorchvisiontorchaudio安
- 第0节 机器学习与深度学习介绍
汉堡go
李哥深度学习专栏人工智能机器学习神经网络
人工智能:能够感知、推理、行动和适应的程序机器学习:能够随着数据量的增加而不断改进性能的算法(数学上的可解释性但准确率不是百分百,灵活度不高)深度学习:机器学习的一个子集:利用多层神经网络从大量数据中进行学习(设计一个很深的网络架构让机器自己学)(深度学习就是找一个函数f)机器学习算法简介(狭义)一般是基于数学,或者统计学的方法,具有很强的可解释性经典传统机器学习算法:KNN、决策树、朴素贝叶斯一
- 基于YOLOv5深度学习的田间杂草检测系统:UI界面 + YOLOv5 + 数据集详细教程
深度学习&目标检测实战项目
YOLO深度学习uiYOLOv5人工智能计算机视觉
引言随着农业科技的进步,智能化农业越来越受到重视,尤其是通过计算机视觉技术对作物进行监测和管理。在农业生产中,杂草的生长对作物的生长产生了负面影响,因此准确地检测和识别田间杂草至关重要。本文将详细介绍如何构建一个基于深度学习的田间杂草检测系统,使用YOLOv5模型进行目标检测,并提供一个用户友好的界面。我们将分步骤进行,包括环境配置、数据集准备、模型训练、实时杂草检测系统的实现等内容。目录引言目录
- 人工智能与深度学习的应用案例解析及代码实现
accurater
人工智能深度学习科技机器人
引言人工智能(AI)与深度学习(DeepLearning)作为21世纪最具变革性的技术之一,已渗透到医疗、金融、交通、制造等各个领域。深度学习通过多层神经网络模拟人类认知过程,显著提升了复杂任务的自动化水平。本文将从技术原理、核心应用案例及代码实现三个维度,系统解析其实际应用,并探讨未来挑战与发展方向。一、深度学习技术概述1.1核心技术框架深度学习基于深度神经网络(DNN),其核心在于通过多层非线
- 深度学习笔记——基础部分
肆——
深度学习深度学习笔记人工智能pythonpytorch
深度学习是一种机器学习的方式,通过模仿人脑吃力信息的方式,使用多层神经网络来学习数据的复杂模式和特征。深度学习和机器学习的区别:在机器学习中,特征提取通常需要人工设计和选择,依赖于领域专家的知识来确定哪些特征对模型最为重要;而在深度学习中,特征提取是自动进行的,通过多层神经网络结构直接从原始数据(也可能需要初步处理)中学习复杂特征,减少了对人工干预的依赖,使得模型能够处理更加复杂的数据和任务。计算
- 机器学习基础(4)
yyc_audio
深度学习python机器学习神经网络人工智能
超越基于常识的基准除了不同的评估方法,还应该利用基于常识的基准。训练深度学习模型就好比在平行世界里按下发射火箭的按钮,你听不到也看不到。你无法观察流形学习过程,它发生在数千维空间中,即使投影到三维空间中,你也无法解释它。唯一的反馈信号就是验证指标,就像隐形火箭的高度计。特别重要的是,我们需要知道火箭是否离开了地面。发射地点的海拔高度是多少?模型似乎有15%的精度——这算是很好吗?在开始处理一个数据
- 00计算机视觉学习内容
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉(ComputerVision)开发需要掌握数学基础、编程语言、图像处理、机器学习、深度学习等多个方面的知识。以下是一个系统的学习路线:1️⃣数学基础(核心理论支撑)计算机视觉涉及很多数学概念,以下是必备数学知识:✅线性代数(矩阵运算是计算机视觉的核心)向量、矩阵运算(加减、乘法、转置)特征值与特征向量SVD(奇异值分解),用于图像压缩、降维齐次坐标变换(用于3D计算机视觉)✅概率统计(
- 01计算机视觉学习计划
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉系统学习计划(3-6个月)本计划按照数学→编程→图像处理→机器学习→深度学习→3D视觉→项目实战的顺序,确保从基础到高级,结合理论和实践。第一阶段(第1-2个月):基础夯实✅目标:掌握数学基础、Python/C++编程、基本图像处理1️⃣数学基础(2周)每日2小时线性代数:矩阵运算、特征值分解(推荐《线性代数及其应用》)概率统计:高斯分布、贝叶斯定理微积分:偏导数、梯度下降傅里叶变换:图
- 特斯拉FSD系统:自动驾驶的未来
百态老人
人工智能笔记
FSD系统概述FSD(FullSelf-Driving)系统是特斯拉研发的一套高级自动驾驶技术,旨在实现车辆在各种道路和驾驶场景下的完全自动驾驶。FSD系统通过集成先进的计算机视觉、深度学习、传感器融合等技术,利用车辆上安装的多种传感器和先进的计算机视觉技术,实现对周围环境的感知和理解。特斯拉通过不断收集和分析实际道路数据,持续优化其自动驾驶算法,使得FSD技术的安全性和可靠性得到了大幅提升.FS
- 特斯拉FSD不同版本的进化
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
特斯拉,FSD,自动驾驶,深度学习,计算机视觉,强化学习,神经网络,模型训练1.背景介绍特斯拉自2016年推出Autopilot以来,一直致力于开发全自动驾驶系统,其目标是实现完全无人驾驶,让汽车能够像人类一样感知周围环境,做出安全可靠的驾驶决策。FSD(FullSelf-Driving)是特斯拉自动驾驶系统的最高级别,它旨在实现车辆在任何道路和环境条件下都能安全自主驾驶的能力。FSD的开发是一个
- 使用 Dlib 库进行人脸检测和人脸识别
萧鼎
python基础到进阶教程计算机视觉人工智能python人脸识别人脸检测
使用Dlib库进行人脸检测和人脸识别什么是Dlib?Dlib是一个广泛使用的C++库,提供了多种用于机器学习和计算机视觉的工具。它包含了人脸检测、人脸识别、物体检测、图像处理等功能。Dlib具有高效、易用的Python接口,因此它也被广泛应用于Python中进行深度学习和计算机视觉任务。安装Dlib首先,我们需要在Python环境中安装Dlib库。你可以通过pip进行安装:pipinstalldl
- 介绍常见的图片分类模型与算法
萧鼎
python基础到进阶教程算法分类数据挖掘
介绍常见的图片分类模型与算法在机器学习和深度学习的领域中,图片分类任务是一个广泛的应用场景。随着深度学习技术的飞速发展,很多强大的图像分类算法和模型已经被提出,广泛应用于从医疗影像到自动驾驶、从人脸识别到图像检索等多个领域。本文将重点介绍多种用于图像分类的经典算法与模型,帮助你了解在图像分类任务中常用的技术。1.传统机器学习模型在深度学习崭露头角之前,传统的机器学习模型是图像分类的主流方法。这些模
- 如何通过卷积神经网络(CNN)有效地提取图像的局部特征,并在CIFAR-10数据集上实现高精度的分类?
浪九天
人工智能理论python后端深度学习神经网络人工智能机器学习pytorch
目录1.CNN提取图像局部特征的原理2.在CIFAR-10数据集上实现高精度分类的步骤2.1数据准备2.2构建CNN模型2.3定义损失函数和优化器2.4训练模型2.5测试模型3.提高分类精度的技巧卷积神经网络(ConvolutionalNeuralNetwork,CNN)是专门为处理具有网格结构数据(如图像)而设计的深度学习模型,能够有效地提取图像的局部特征。下面将详细介绍如何通过CNN提取图像局
- 一文读懂!OpenCV 实时人脸识别从 0 到 1,小白也能轻松实操的超详细教程(完整教程及源码)
AI_DL_CODE
opencv人工智能计算机视觉人脸识别
摘要:本文围绕使用OpenCV实现实时人脸识别展开。从环境搭建入手,详细介绍Python及相关库的安装。数据准备环节涵盖收集、标注及预处理步骤。深入阐述特征提取、模型训练方法,包含传统与深度学习方式,还介绍OpenCV预训练模型的使用与评估。详细讲解实时识别过程,包括打开摄像头、逐帧处理及结果显示优化。针对复杂场景,提出光照、姿态、遮挡等问题的解决办法及模型更新维护策略。通过丰富代码示例与解释,助
- 弹性算力革命:企业级GPU云服务如何重构AI与图形处理的效能边界
企业级GPU云服务是一种面向企业用户,基于云计算技术,将强大的图形处理器(GPU)资源以服务的形式提供给企业的创新模式。通过这种模式,企业无需自行购置、安装和维护昂贵的GPU硬件设备,只需按需从云端获取GPU计算资源,就能满足自身多样化的业务需求。随着人工智能、大数据、深度学习、虚拟现实以及高性能计算等前沿技术在各行业的深入渗透,企业对于大规模并行计算能力的要求越来越高。GPU凭借其卓越的并行计算
- 弹性算力革命:企业级GPU云服务如何重构AI与图形处理的效能边界
企业级GPU云服务是一种面向企业用户,基于云计算技术,将强大的图形处理器(GPU)资源以服务的形式提供给企业的创新模式。通过这种模式,企业无需自行购置、安装和维护昂贵的GPU硬件设备,只需按需从云端获取GPU计算资源,就能满足自身多样化的业务需求。随着人工智能、大数据、深度学习、虚拟现实以及高性能计算等前沿技术在各行业的深入渗透,企业对于大规模并行计算能力的要求越来越高。GPU凭借其卓越的并行计算
- 深度学习主流经典框架PyTorch(day2)
inquisitor.dom
深度学习pytorch人工智能
五、Tensor数据转换5.1张量转numpy浅拷贝调用numpy()方法可以把Tensor转换为Numpy,此时内存是共享的。#张量转numpydata_tensor=torch.tensor([[1,2,3],[4,5,6]])data_numpy=data_tensor.numpy()print(type(data_tensor),type(data_numpy))#他们内存是共享的data
- 【AI学习从零至壹】pytorch基础
flyyyya
AI算法人工智能学习pytorch
pytorch基础pytorch基础张量(Tensor)张量的属性张量的索引和切⽚:张量的拼接张量的算数运算单元素张量In-place操作与numpy之间的转换张量到numpy数组计算图静态计算图动态计算图pytorch计算图可视化pytorch基础PyTorch是⼀个开源的深度学习框架,由Facebook的⼈⼯智能研究团队开发和维护,在学术界和⼯业界都得到了⼴泛应⽤。张量(Tensor)张量(T
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc