图像融合论文阅读:Dif-fusion: Towards high color fidelity in infrared and visible image fusion with diffusion

@article{yue2023dif,
title={Dif-fusion: Towards high color fidelity in infrared and visible image fusion with diffusion models},
author={Yue, Jun and Fang, Leyuan and Xia, Shaobo and Deng, Yue and Ma, Jiayi},
journal={arXiv preprint arXiv:2301.08072},
year={2023}
}


论文级别:-
影响因子:-

[论文下载地址]
[代码下载地址]


文章目录

  • 论文解读
    • 关键词
    • 核心思想
    • 网络结构
    • 损失函数
    • 数据集
    • 训练设置
    • 实验
      • 评价指标
      • Baseline
      • 实验结果
  • 传送门
    • 图像融合相关论文阅读笔记
    • 图像融合论文baseline总结
    • 其他论文
    • 其他总结
    • ✨精品文章总结


论文解读

以往的VIF网络将多通道图像转换为单通道图像,忽略了【颜色保真】,为了解决这个问题,作者提出了【基于扩散模型】的图像融合网络【Dif-Fusion】,在具有正向扩散和反向扩散的潜在空间中,使用降噪网络【建立多通道数据分布】,然后降噪网络【提取】包含了可见光信息和红外信息的【多通道扩散特征】,最后将扩散特征输入多通道融合模块生成三通道的融合图像。

关键词

Image fusion, color fidelity, multimodal information, diffusion models, latent representation, deep generative
model.
图像融合,颜色保真度,多模态信息,扩散模型,潜在表示,深度生成模型

核心思想

将源图像通道拼接,输入扩散模型,然后从扩散模型中提取扩散特征,通过多通道的扩散特征,输入多通道融合网络中恢复出多通道的融合图像

参考链接
[什么是图像融合?(一看就通,通俗易懂)]

网络结构

作者提出的网络结构如下所示。
图像融合论文阅读:Dif-fusion: Towards high color fidelity in infrared and visible image fusion with diffusion_第1张图片
图像融合论文阅读:Dif-fusion: Towards high color fidelity in infrared and visible image fusion with diffusion_第2张图片

损失函数

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

数据集

图像融合数据集链接
[图像融合常用数据集整理]

训练设置

实验

评价指标

  • MI
  • VIF
  • SF
  • Qabf
  • SD

参考资料
[图像融合定量指标分析]

Baseline

  • FusionGAN, SDDGAN, GANMcC, SDNet, U2Fusion, TarDAL

✨✨✨参考资料
✨✨✨强烈推荐必看博客[图像融合论文baseline及其网络模型]✨✨✨

实验结果



图像融合论文阅读:Dif-fusion: Towards high color fidelity in infrared and visible image fusion with diffusion_第3张图片
图像融合论文阅读:Dif-fusion: Towards high color fidelity in infrared and visible image fusion with diffusion_第4张图片
图像融合论文阅读:Dif-fusion: Towards high color fidelity in infrared and visible image fusion with diffusion_第5张图片
图像融合论文阅读:Dif-fusion: Towards high color fidelity in infrared and visible image fusion with diffusion_第6张图片
图像融合论文阅读:Dif-fusion: Towards high color fidelity in infrared and visible image fusion with diffusion_第7张图片

更多实验结果及分析可以查看原文:
[论文下载地址]
[代码下载地址]


传送门

图像融合相关论文阅读笔记

[LRRNet: A Novel Representation Learning Guided Fusion Network for Infrared and Visible Images]
[(DeFusion)Fusion from decomposition: A self-supervised decomposition approach for image fusion]
[ReCoNet: Recurrent Correction Network for Fast and Efficient Multi-modality Image Fusion]
[RFN-Nest: An end-to-end resid- ual fusion network for infrared and visible images]
[SwinFuse: A Residual Swin Transformer Fusion Network for Infrared and Visible Images]
[SwinFusion: Cross-domain Long-range Learning for General Image Fusion via Swin Transformer]
[(MFEIF)Learning a Deep Multi-Scale Feature Ensemble and an Edge-Attention Guidance for Image Fusion]
[DenseFuse: A fusion approach to infrared and visible images]
[DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pair]
[GANMcC: A Generative Adversarial Network With Multiclassification Constraints for IVIF]
[DIDFuse: Deep Image Decomposition for Infrared and Visible Image Fusion]
[IFCNN: A general image fusion framework based on convolutional neural network]
[(PMGI) Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity]
[SDNet: A Versatile Squeeze-and-Decomposition Network for Real-Time Image Fusion]
[DDcGAN: A Dual-Discriminator Conditional Generative Adversarial Network for Multi-Resolution Image Fusion]
[FusionGAN: A generative adversarial network for infrared and visible image fusion]
[PIAFusion: A progressive infrared and visible image fusion network based on illumination aw]
[CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality Image Fusion]
[U2Fusion: A Unified Unsupervised Image Fusion Network]
综述[Visible and Infrared Image Fusion Using Deep Learning]

图像融合论文baseline总结

[图像融合论文baseline及其网络模型]

其他论文

[3D目标检测综述:Multi-Modal 3D Object Detection in Autonomous Driving:A Survey]

其他总结

[CVPR2023、ICCV2023论文题目汇总及词频统计]

✨精品文章总结

✨[图像融合论文及代码整理最全大合集]
✨[图像融合常用数据集整理]

如有疑问可联系:[email protected];
码字不易,【关注,收藏,点赞】一键三连是我持续更新的动力,祝各位早发paper,顺利毕业~

你可能感兴趣的:(图像融合,论文阅读,深度学习,图像融合,图像处理,人工智能,论文笔记)