Biopython-Chapter3.生物序列对象

原文连接

序列和字母表

Bio.Alphabet.IUPAC提供Protein、DNA和RNA的基本定义
扩展:
Protein——IUPAC.protein基本类;IUPAC.extended_protein常见氨基酸类
DNA——IUPAC.unambiguous_dna基本字母;IUPAC.ambiguous_dna歧义字母;IUPAC.extended_dna修饰后的碱基
RNA——IUPAC.unambiguous_rna基本字母;IUPAC.ambiguous_rna歧义字母

定义模糊序列

In[2]: from Bio.Seq import Seq
In[3]: my_seq = Seq("AGTACACTGGT")
In[4]: my_seq
Out[4]: 
Seq('AGTACACTGGT', Alphabet())
In[5]: my_seq.alphabet
Out[5]: 
Alphabet()

Seq()可以创建一个基本的序列对象

定义DNA序列

In[6]: from Bio.Seq import Seq
In[7]: from Bio.Alphabet import IUPAC
In[8]: my_seq = Seq("AGCTGCAGCGAGCGAGC", IUPAC.unambiguous_dna)
In[9]: my_seq
Out[9]: 
Seq('AGCTGCAGCGAGCGAGC', IUPACUnambiguousDNA())
In[10]: my_seq.alphabet
Out[10]: 
IUPACUnambiguousDNA()

序列处理

迭代元素

In[11]: from Bio.Seq import Seq
In[12]: from Bio.Alphabet import IUPAC
In[15]: for index,letter in enumerate(my_seq):
   ...:     print(index,letter)
   ...:     
0 A
1 G
2 T
3 C
4 G
5 A

enumerate()可以遍历序列中的元素及其下标

获取长度

In[17]: my_seq
Out[17]: 
Seq('AGTCGA', IUPACUnambiguousDNA())
In[18]: print(len(my_seq))
6

获取序列元素

In[19]: print(my_seq[0])
A
In[20]: print(my_seq[2])
T

非重叠计数

In[21]: Seq("AAAAA").count("AA")
Out[21]: 
2
In[22]: "AAAAA".count("AA")
Out[22]: 
2

统计GC含量

In[27]: from Bio.SeqUtils import GC
In[28]: my_seq
Out[28]: 
Seq('AGTCGA', IUPACUnambiguousDNA())
In[29]: GC(my_seq)
Out[29]: 
50.0

切片

In[30]: my_seq = Seq("AGCTGACTGACGCATGAACGATAGCA", IUPAC.unambiguous_dna)
In[31]: my_seq[4:12]
Out[31]: 
Seq('GACTGACG', IUPACUnambiguousDNA())
In[32]: my_seq[4:12:3]
Out[32]: 
Seq('GTC', IUPACUnambiguousDNA())

产生的新对象保留了原始Seq对象的字母表信息

返回倒序

In[33]: my_seq[::-1]
Out[33]: 
Seq('ACGATAGCAAGTACGCAGTCAGTCGA', IUPACUnambiguousDNA())

转换字符串

In[34]: str(my_seq)
Out[34]: 
'AGCTGACTGACGCATGAACGATAGCA'
In[35]: print(my_seq)
AGCTGACTGACGCATGAACGATAGCA
In[36]: fasta = ">Name\n%s\n" % my_seq
In[37]: print(fasta)
>Name
AGCTGACTGACGCATGAACGATAGCA

print()%可以自动转换

序列连接

相同字母表

In[39]: dna1 = Seq("AGCTAGCGA",IUPAC.unambiguous_dna)
In[40]: dna2 = Seq("AGTCCGATG", IUPAC.unambiguous_dna)
In[41]: dna = dna1 + dna2
In[42]: dna
Out[42]: 
Seq('AGCTAGCGAAGTCCGATG', IUPACUnambiguousDNA())

不同字母表

In[50]: from Bio.Alphabet import generic_alphabet
In[51]: protein.alphabet = generic_alphabet
In[52]: dna.alphabet = generic_alphabet
In[53]: dna + protein
Out[53]: 
Seq('AGCTAGCGAAGTCCGATGEVRNAK', Alphabet())

不同字母表序列连接,必须首先将两个序列转换为通用字母表,否则会报错
ypeError: Incompatible alphabets IUPACUnambiguousDNA() and IUPACProtein()

大小写转换

In[56]: my_seq = Seq("acgGATC",generic_alphabet)
In[57]: my_seq.upper()
Out[57]: 
Seq('ACGGATC', Alphabet())
In[58]: my_seq.lower()
Out[58]: 
Seq('acggatc', Alphabet())

互补链和反义链

In[61]: my_seq = Seq("GATCGATGGGCCTATATAGGATCGAAAATCGC", IUPAC.unambiguous_dna)
In[62]: my_seq.complement()
Out[62]: 
Seq('CTAGCTACCCGGATATATCCTAGCTTTTAGCG', IUPACUnambiguousDNA())
In[63]: my_seq.reverse_complement()
Out[63]: 
Seq('GCGATTTTCGATCCTATATAGGCCCATCGATC', IUPACUnambiguousDNA())

生物过程模拟

转录

In[64]: coding_dna = Seq("AGTCGATCGATGACTAGCATGACGCATGACT", IUPAC.unambiguous_dna)
In[65]: coding_dna
Out[65]: 
Seq('AGTCGATCGATGACTAGCATGACGCATGACT', IUPACUnambiguousDNA())
In[66]: template_dna = coding_dna.reverse_complement()
In[67]: template_dna
Out[67]: 
Seq('AGTCATGCGTCATGCTAGTCATCGATCGACT', IUPACUnambiguousDNA())
In[68]: mRNA = coding_dna.transcribe()
In[69]: mRNA
Out[69]: 
Seq('AGUCGAUCGAUGACUAGCAUGACGCAUGACU', IUPACUnambiguousRNA())
In[70]: template_dna.reverse_complement().transcribe()
Out[70]: 
Seq('AGUCGAUCGAUGACUAGCAUGACGCAUGACU', IUPACUnambiguousRNA())

transcribe()将T→U转换,并调整字母表

反转录

In[71]: mRNA.back_transcribe()
Out[71]: 
Seq('AGTCGATCGATGACTAGCATGACGCATGACT', IUPACUnambiguousDNA())

back_transcribe()从U → T的替代并伴随着字母表的变化

翻译

In[73]: dna_seq = Seq("ATGCGTAGCTAGCTGACGTACGTAGCA",IUPAC.unambiguous_dna)
In[74]: len(dna_seq)
Out[74]: 
27
In[75]: mrna_seq = dna.transcribe()
In[76]: mrna_seq.translate()
Out[76]: 
Seq('S*RSPM', HasStopCodon(ExtendedIUPACProtein(), '*'))
In[77]: dna.translate()
Out[77]: 
Seq('S*RSPM', HasStopCodon(ExtendedIUPACProtein(), '*'))

序列长度必须是3的倍数,否则translate()报错

translate(table,stop_symbol,to_stop,cds)
table指定遗传密码表,默认使用标准遗传密码,详细见NCBI的遗传密码表说明

In[79]: dna.translate(table="Yeast Mitochondrial")
Out[79]: 
Seq('S*RSPM', HasStopCodon(ExtendedIUPACProtein(), '*'))

指定使用酵母线粒体密码表进行翻译

to_stop仅翻译到阅读框的第一个终止密码子,然后停止,终止密码子本身不翻译

In[80]: dna.translate(to_stop =  True)
Out[80]: 
Seq('S', ExtendedIUPACProtein())

stop_symbol指定终止符号

In[82]: dna.translate(stop_symbol = "?")
Out[82]: 
Seq('S?RSPM', HasStopCodon(ExtendedIUPACProtein(), '?'))

cds说明翻译时以起始密码子编码最前面的3个碱基

In[85]: from Bio.Seq import Seq
In[86]: from Bio.Alphabet import generic_dna
In[87]: gene = Seq("GTGAAAAAGATGCAATCTATCGTACTCGCACTTTCCCTGGTTCTGGTCGCTCCCATGGCA" + \
   ...:            "GCACAGGCTGCGGAAATTACGTTAGTCCCGTCAGTAAAATTACAGATAGGCGATCGTGAT" + \
   ...:             "AATCGTGGCTATTACTGGGATGGAGGTCACTGGCGCGACCACGGCTGGTGGAAACAACAT" + \
   ...:             "TATGAATGGCGAGGCAATCGCTGGCACCTACACGGACCGCCGCCACCGCCGCGCCACCAT" + \
   ...:             "AAGAAAGCTCCTCATGATCATCACGGCGGTCATGGTCCAGGCAAACATCACCGCTAA",
   ...:             generic_dna)
In[88]: gene.translate(table="Bacterial")
Out[88]: 
Seq('VKKMQSIVLALSLVLVAPMAAQAAEITLVPSVKLQIGDRDNRGYYWDGGHWRDH...HR*', HasStopCodon(ExtendedIUPACProtein(), '*'))
In[89]: gene.translate(table="Bacterial", cds=True)
Out[89]: 
Seq('MKKMQSIVLALSLVLVAPMAAQAAEITLVPSVKLQIGDRDNRGYYWDGGHWRDH...HHR', ExtendedIUPACProtein())

密码表

在线密码表

NCBI的遗传密码表说明

内置密码表

In[90]: from Bio.Data import CodonTable
In[92]: print(CodonTable.unambiguous_dna_by_name["Standard"])  #通过名字来做标识
Table 1 Standard, SGC0

  |  T      |  C      |  A      |  G      |
--+---------+---------+---------+---------+--
T | TTT F   | TCT S   | TAT Y   | TGT C   | T
T | TTC F   | TCC S   | TAC Y   | TGC C   | C
T | TTA L   | TCA S   | TAA Stop| TGA Stop| A
T | TTG L(s)| TCG S   | TAG Stop| TGG W   | G
--+---------+---------+---------+---------+--
C | CTT L   | CCT P   | CAT H   | CGT R   | T
C | CTC L   | CCC P   | CAC H   | CGC R   | C
C | CTA L   | CCA P   | CAA Q   | CGA R   | A
C | CTG L(s)| CCG P   | CAG Q   | CGG R   | G
--+---------+---------+---------+---------+--
A | ATT I   | ACT T   | AAT N   | AGT S   | T
A | ATC I   | ACC T   | AAC N   | AGC S   | C
A | ATA I   | ACA T   | AAA K   | AGA R   | A
A | ATG M(s)| ACG T   | AAG K   | AGG R   | G
--+---------+---------+---------+---------+--
G | GTT V   | GCT A   | GAT D   | GGT G   | T
G | GTC V   | GCC A   | GAC D   | GGC G   | C
G | GTA V   | GCA A   | GAA E   | GGA G   | A
G | GTG V   | GCG A   | GAG E   | GGG G   | G
--+---------+---------+---------+---------+--

In[93]: print(CodonTable.unambiguous_dna_by_id[1]) #通过数字来做标识
Table 1 Standard, SGC0

  |  T      |  C      |  A      |  G      |
--+---------+---------+---------+---------+--
T | TTT F   | TCT S   | TAT Y   | TGT C   | T
T | TTC F   | TCC S   | TAC Y   | TGC C   | C
T | TTA L   | TCA S   | TAA Stop| TGA Stop| A
T | TTG L(s)| TCG S   | TAG Stop| TGG W   | G
--+---------+---------+---------+---------+--
C | CTT L   | CCT P   | CAT H   | CGT R   | T
C | CTC L   | CCC P   | CAC H   | CGC R   | C
C | CTA L   | CCA P   | CAA Q   | CGA R   | A
C | CTG L(s)| CCG P   | CAG Q   | CGG R   | G
--+---------+---------+---------+---------+--
A | ATT I   | ACT T   | AAT N   | AGT S   | T
A | ATC I   | ACC T   | AAC N   | AGC S   | C
A | ATA I   | ACA T   | AAA K   | AGA R   | A
A | ATG M(s)| ACG T   | AAG K   | AGG R   | G
--+---------+---------+---------+---------+--
G | GTT V   | GCT A   | GAT D   | GGT G   | T
G | GTC V   | GCC A   | GAC D   | GGC G   | C
G | GTA V   | GCA A   | GAA E   | GGA G   | A
G | GTG V   | GCG A   | GAG E   | GGG G   | G
--+---------+---------+---------+---------+--

Seq对象

比较

In[2]: from Bio.Seq import Seq
In[3]: from Bio.Alphabet import IUPAC
In[4]: seq1 = Seq("AGCT", IUPAC.unambiguous_dna)
In[5]: seq2 = Seq("AGCT", IUPAC.unambiguous_dna)
In[6]: seq1 == seq2
Out[6]: 
True
In[12]: id(seq1) == id(seq2)
Out[12]: 
False
In[13]: id(seq1)
Out[13]: 
2111559244880
In[14]: id(seq2)
Out[14]: 
2111559374160
In[15]: str(seq1) == str(seq2)
Out[15]: 
True

两个Seq对象,序列和字母表都时相同的,虽然seq1 == seq2 返回True,但是其实内存中这两个对象不是同一个。通过id()函数可以看到id(seq1) == id(seq2)返回False,所以在做序列比较时,可以使用str()处理后,只是以字符串比较。

可变

tomutable()

In[19]: my_seq = Seq("GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA", IUPAC.unambiguous_dna)
In[20]: my_seq[5] = "G"
Traceback (most recent call last):
  File "C:\Users\AnLau\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2881, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "", line 1, in 
    my_seq[5] = "G"
TypeError: 'Seq' object does not support item assignment
In[21]: mutable_seq = my_seq.tomutable()
In[22]: mutable_seq
Out[22]: 
MutableSeq('GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA', IUPACUnambiguousDNA())
In[23]: mutable_seq[5]="G"
In[24]: mutable_seq
Out[24]: 
MutableSeq('GCCATGGTAATGGGCCGCTGAAAGGGTGCCCGA', IUPACUnambiguousDNA())

Seq对象不可变
可以使用tomutable()函数将Seq对象变为MutableSeq对象

创建MutableSeq对象

In[28]: mutable_seq = MutableSeq("AGCGATGAC",IUPAC.unambiguous_dna)
In[29]: mutable_seq
Out[29]: 
MutableSeq('AGCGATGAC', IUPACUnambiguousDNA())
In[30]: mutable_seq[0]="T"
In[31]: mutable_seq
Out[31]: 
MutableSeq('TGCGATGAC', IUPACUnambiguousDNA())
In[32]: mutable_seq.remove("T")
In[33]: mutable_seq
Out[33]: 
MutableSeq('GCGATGAC', IUPACUnambiguousDNA())
In[34]: mutable_seq.reverse()
In[35]: mutable_seq
Out[35]: 
MutableSeq('CAGTAGCG', IUPACUnambiguousDNA())
In[36]: new_seq = mutable_seq.toseq()
In[37]: new_seq
Out[37]: 
Seq('CAGTAGCG', IUPACUnambiguousDNA())
In[38]: new_seq.reverse_complement()
Out[38]: 
Seq('CGCTACTG', IUPACUnambiguousDNA())
In[39]: new_seq
Out[39]: 
Seq('CAGTAGCG', IUPACUnambiguousDNA())

可以使用toseq()将MutableSeq对象转变为Seq对象
MutableSeq对象有reverse()方法,而且各个方法直接修改MutableSeq对象本身

UnknownSeq对象

In[40]: from Bio.Seq import UnknownSeq
In[41]: unk = UnknownSeq(20)
In[42]: unk
Out[42]: 
UnknownSeq(20, alphabet = Alphabet(), character = '?')
In[43]: unk_dna = UnknownSeq(20,IUPAC.unambiguous_dna)
In[44]: unk_dna
Out[44]: 
UnknownSeq(20, alphabet = IUPACUnambiguousDNA(), character = 'N')
In[45]: print(unk)
????????????????????
In[46]: print(unk_dna)
NNNNNNNNNNNNNNNNNNNN

UnknownSeq对象可以只存储一个“N”和序列所需的长度(整数),节省内存

直接使用字符串

In[47]: from Bio.Seq import reverse_complement, transcribe, back_transcribe, translate
In[48]: dna_string = "AGTCGATCGATCGACTGCGACGTCGA"
In[49]: reverse_complement(dna_string)
Out[49]: 
'TCGACGTCGCAGTCGATCGATCGACT'
In[50]: transcribe(dna_string)
Out[50]: 
'AGUCGAUCGAUCGACUGCGACGUCGA'
In[51]: translate(dna_string)
Out[51]: 
'SRSIDCDV'
C:\Users\AnLau\Anaconda3\lib\site-packages\Bio\Seq.py:2309: BiopythonWarning: Partial codon, len(sequence) not a multiple of three. Explicitly trim the sequence or add trailing N before translation. This may become an error in future.
  BiopythonWarning)

你可能感兴趣的:(Biopython-Chapter3.生物序列对象)