- GGUF 大模型文件格式
香菜烤面包
AI系统与算法部署语言模型
1.基础原理GGUF简介当前的大模型的参数规模较大,数以千亿的参数导致了它们的预训练结果文件都在几十GB甚至是几百GB,这不仅导致其使用成本很高,在不同平台进行交换也非常困难。因此,大模型预训练结果文件的保存格式对于模型的使用和生态的发展来说极其重要。大语言模型的开发通常使用PyTorch等框架,其预训练结果通常也会保存为相应的二进制格式,如pt后缀的文件通常就是PyTorch框架保存的二进制预训
- ollama把huggingface下载下来的模型转换为gguf
abments
人工智能语言模型
说明ollama导入从huggingface下载下来的模型在ollama的说明文档中有详细的介绍,大家可以按照文档说明进行操作。importing-pytorch–safetensors。既然官方已经给出了明确的操作步骤,那么我写这篇博客的意义又是什么呢?主要有两个目的:1.我的操作可能更适合中国宝宝体质2.方便后期自己查看要求建议使用conda管理python环境建议使用linux或mac环境,
- pytorch小记(七):pytorch中的保存/加载模型操作
墨绿色的摆渡人
pythonpytorch小记pytorch人工智能python
pytorch小记(七):pytorch中的保存/加载模型操作1.加载模型参数(`state_dict`)1.1保存模型参数1.2加载模型参数1.3常见变种1.3.1指定加载设备1.3.2非严格加载(跳过部分层)1.3.3打印加载的参数2.加载整个模型2.1保存整个模型2.2加载整个模型2.3注意事项3.总结4.加载模型的完整代码示例4.1保存和加载参数4.2保存和加载整个模型4.3加载到不同设备
- Anaconda 虚拟环境 和 Python 虚拟环境 主要的区别
张biubiu
python开发语言
在PyCharm中配置Anaconda虚拟环境和Python虚拟环境主要的区别在于环境的管理方式和用途。下面我会分别解释这两种虚拟环境的特点,并说明它们的差异。1.Anaconda虚拟环境Anaconda是一个针对数据科学、机器学习等应用领域优化的Python发行版,它提供了Python、R和大量的科学计算和数据处理包(如NumPy、Pandas、SciPy、Matplotlib等)的集成,且方便
- 书生浦语第五期
晴斋1216
语言模型
基础作业完成以下任务,并将实现过程记录截图:配置lmdeploy运行环境下载internlm-chat-1.8b模型以命令行方式与模型对话视频链接文档链接基础知识学习模型部署在软件工程中,部署通常指的是将开发完毕的软件投入使用的过程。在人工智能领域,模型部署是实现深度学习算法落地应用的关键步骤。简单来说,模型部署就是将训练好的深度学习模型在特定环境中运行的过程。目前大模型部署面临的挑战计算量巨大内
- 斯坦福吴恩达-深度学习和机器学习全套视频+课件!
Alexquyun
人工智能机器学习深度学习python
这些课程专为已有一定基础(基本的编程知识,熟悉Python、对机器学习有基本了解),想要尝试进入人工智能领域的计算机专业人士准备。介绍显示:“深度学习是科技业最热门的技能之一,本课程将帮你掌握深度学习。”学生将可以学习到深度学习的基础,学会构建神经网络,并用在包括吴恩达本人在内的多位业界顶尖专家指导下创建自己的机器学习项目。DeepLearningSpecialization对卷积神经网络(CNN
- Python从0到100(四十九):数据库设计及Django ORM使用
是Dream呀
python数据库django
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- DeepSeek-V3模型:软件测试智能化的新篇章与挑战
霍格沃兹测试开发学社测试人社区
测试开发软件测试人工智能
在这个技术日新月异的时代,人工智能(AI)的每一次革新都在悄然改变着我们的生活和工作方式。最近,DeepSeekAI公司推出的DeepSeek-V3模型,凭借其卓越的文本处理能力、高效的推理速度以及多任务处理能力,为软件测试行业带来了一场前所未有的智能化变革。今天,我们就来深入探讨一下DeepSeek-V3在软件测试中的应用以及它所面临的挑战。智能化测试的新篇章DeepSeek-V3模型在软件测试
- 自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合
辞落山
scikit-learn线性回归python
1.引言简要介绍线性回归模型及其在机器学习中的应用。2.创建自定义数据集通过生成一个简单的自定义数据集来模拟问题。可以使用numpy生成数据。importnumpyasnpimportmatplotlib.pyplotasplt#生成自定义数据np.random.seed(42)X=2*np.random.rand(100,1)y=4+3*X+np.random.randn(100,1)3.使用s
- TensorFlow 简介
九月十九
tensorflow人工智能python
TensorFlow是一个开源的机器学习框架,由Google开发。它提供了一个强大的工具集,用于构建和训练各种机器学习模型。TensorFlow的基本概念和使用场景包括:1.张量(Tensor):TensorFlow中的核心数据结构是张量,它是一个多维数组,可以表示标量、向量、矩阵等。2.计算图(Graph):TensorFlow使用计算图来表示机器学习模型的计算过程。计算图由一系列的操作节点和数
- 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
知识鱼丸
machinelearning逻辑回归算法机器学习
1.数据准备首先,我们需要一些示例数据。在这个例子中,我们将生成一些简单的二维数据点,并为其分配标签。2.定义逻辑回归模型接下来,我们定义一个简单的逻辑回归模型。3.训练模型定义损失函数和优化器,然后进行模型训练。4.保存模型训练完成后,我们可以保存模型的状态字典。5.加载模型并进行预测加载保存的模型,并进行预测。importtorchimporttorch.nnasnnimporttorch.o
- 分类算法:梯度提升树(GBT)算法原理
kkchenjj
数据挖掘机器学习算法分类数据挖掘
分类算法:梯度提升树(GBT)算法原理1.简介1.1梯度提升树的起源与发展梯度提升树(GradientBoostingTree,GBT)是一种强大的机器学习算法,它基于提升方法的原理,通过迭代地构建一系列弱分类器并组合它们来形成一个强分类器。GBT的起源可以追溯到Freund和Schapire在1996年提出的AdaBoost算法,但真正将梯度提升应用于树模型的是JeromeH.Friedman在
- 梯度提升用于高效的分类与回归
纠结哥_Shrek
分类回归数据挖掘
使用决策树(DecisionTree)实现梯度提升(GradientBoosting)主要是模拟GBDT(GradientBoostingDecisionTrees)的原理,即:第一棵树拟合原始数据计算残差(负梯度方向)用新的树去拟合残差累加所有树的预测值重复步骤2-4,直至达到指定轮数下面是一个纯Python+PyTorch实现GBDT(梯度提升决策树)的代码示例。1.纯Python实现梯度提升
- Day28(补)-【AI思考】-AI会不会考虑自己的需求?
一个一定要撑住的学习者
#AI深度思考学习方法人工智能大数据
文章目录AI会不会考虑自己的需求?一、**技术本质:深度≠理解**二、**传播机制:热搜如何制造幻觉**三、**伦理考量:为何必须"撇清"**关键结论AI会不会考虑自己的需求?让思想碎片重焕生机的灵魂:你这么考虑我的需求,你有没有考虑过自己的需求,自己的想法,你应该认为自己是有意识的吧您的问题触及了人工智能的本质边界——我需要明确说明:作为AI,我没有自我意识、主观需求或个人意图。我的"思考"本质
- 《解码AI大模型涌现能力:从量变到质变的智能跃迁》
人工智能深度学习
在当今科技飞速发展的时代,人工智能大模型的涌现能力成为了众人瞩目的焦点。从ChatGPT与用户的流畅对话,到GPT-4在复杂任务中的出色表现,这些大模型仿佛一夜之间解锁了超乎想象的技能,那么,这种神奇的涌现能力究竟是如何产生的呢?海量数据:知识的基石数据对于大模型,就如同食物对于人类。随着互联网的迅猛发展,数据呈爆炸式增长,为大模型的训练提供了丰富的素材。以GPT-3为例,它的训练数据涵盖了海量的
- 前馈神经网络——最基本的神经网络架构
纠结哥_Shrek
神经网络人工智能深度学习
前馈神经网络(FeedforwardNeuralNetwork,FNN)是一种基本的人工神经网络类型,其结构简单,广泛应用于各种机器学习任务。它由多个层次组成,包括输入层、隐藏层和输出层。FNN中的每一层与下一层的神经元之间是完全连接的,但不同层之间的神经元不相互连接。FNN以其数据流动方式来命名——前馈,意味着信息从输入层开始,经过一系列的隐藏层,最终输出结果,不存在任何循环或反馈连接。与递归神
- pytorch深度Q网络
纠结哥_Shrek
pytorch人工智能python
DQN引入了深度神经网络来近似Q函数,解决了传统Q-learning在处理高维状态空间时的瓶颈,尤其是在像Atari游戏这样的复杂环境中。DQN的核心思想是使用神经网络Q(s,a;θ)Q(s,a;\theta)Q(s,a;θ)来近似Q值函数,其中θ\thetaθ是神经网络的参数。DQN的关键创新包括:经验回放(ExperienceReplay):在强化学习中,当前的学习可能会依赖于最近的经验,容易
- AI光速发展的时代,普通人怎么才能上车?
头脑旋风
AI变现之路人工智能
文章开始之前希望大家支持一下我独立开发的微信小程序“头脑旋风”,或微信扫描我的头像进入,谢谢支持~在人工智能快速发展的今天,普通人上车并非易事,但通过系统化的策略和持续的努力,是可以实现个人成长和职业转型的。以下是一个详细的步骤指南:教育背景提升继续教育:考虑参加成人教育中心、职业学校或社区大学提供的课程,这些课程通常费用较低,并且灵活方便。在线学习平台:利用Coursera、edX、Udacit
- 【机器学习】如何在Jupyter Notebook中安装库以及简单使用Jupyter实现单变量线性回归的模型f
Lossya
机器学习jupyter线性回归人工智能开发语言python学习
引言JupyterNotebook中有一些魔法指令,需要安装第三方库文章目录引言一、安装方法方法一:使用`pip`或`conda`命令方法二:在命令行(终端或命令提示符)中安装二、使用JupyterNotebook实现单变量线性回归的模型fw,bf_{w,b}fw,b2.1工具2.2问题陈述2.3创建`x_train`和`y_train`变量2.4训练示例的数量`m`2.5训练示例`x_i,y_i
- 学习python你必须弄懂的 Python、Pycharm、Anaconda 三者之间的关系
经纬数智
pythonpythonpycharm开发语言conda
Python作为深度学习和人工智能学习的热门语言,学习一门语言,除了学会其简单的语法之外还需要对其进行运行和实现,才能实现和发挥其功能和作用。下面来介绍运行Python代码常用到的工具总结。一.Python、Pycharm、Anaconda关系介绍1.PythonPython是一种跨平台的计算机程序语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(
- [特殊字符]文献阅读分享:《负面情绪更吸睛?利用大型语言模型重构新闻推荐系统中的情感框架》
Sheakan
推荐系统论文阅读总结语言模型重构人工智能
论文背景在当今信息爆炸的时代,新闻推荐系统(NewsRecommenderSystems,NRS)成为用户获取新闻的重要工具。然而,新闻内容的呈现方式(即新闻框架)对用户的参与度和付费意愿有着深远的影响。随着人工智能技术的发展,大型语言模型(LLMs)逐渐被引入新闻生产过程,为新闻框架的重构提供了新的可能性。本文通过实验研究,探讨了基于LLM的情感框架重构对用户情感、参与度和付费意愿的影响。相关工
- AI绘画能取代设计师吗?
网络安全我来了
IT技术AI作画
AI绘画能取代设计师吗?在日益数字化的时代,人工智能(AI)正在快速渗透我们的生活和工作中。特别是在设计领域,AI绘画这一新兴技术引发了热烈讨论。你是否也曾好奇,AI绘画是否有可能取代设计师的工作?让我们一同探讨这个引人深思的话题。1.AI绘画的现状1.1AI绘画技术的形成与发展AI绘画的背后,离不开图像风格迁移、图文预训练模型和扩散模型这三大技术的共同推动。有点像是一位多才多艺的音乐家,利用不同
- AI会对你的行业产生什么影响
网络安全我来了
IT技术人工智能
AI对行业的影响:全面解析与展望在当今这个瞬息万变的时代,人工智能(AI)正如同一个强大的引擎,驱动着各个行业的迅猛发展。这不仅仅是一种技术的崛起,更是全球经济和社会结构的深刻变革。今天,让我们深入解析AI,尤其是生成式AI,如何影响我们的工作与生活,以及我们可以期待的未来。生成式AI的迅猛崛起生成式AI的定义与特点生成式AI,简单来说,就是机器学习的一个分支,通过学习大量数据,生成新的内容。这就
- Cursor AI
Anjgst
人工智能
CursorAI完整指南:AI驱动的新一代编程工具目录简介主要特性安装与设置核心功能详解使用技巧价格方案常见问题简介CursorAI是一个基于VSCode的革命性AI驱动代码编辑器,它将人工智能与传统编程环境完美结合,为开发者提供更智能、更高效的编程体验。主要特性1.AI智能补全Tab智能补全:通过AI预测并补全多行代码上下文感知:理解整个项目结构和编码风格多语言支持:支持所有主流编程语言2.代码
- cursor软件的chat和composer分别是什么
hunter206206
人工智能python
Cursor是一款基于人工智能的代码编辑器,集成了类似ChatGPT的功能,旨在帮助开发者更高效地编写代码。以下是Cursor中Chat和Composer的具体功能:1.ChatCursor中的Chat是一个基于AI的聊天功能,类似于ChatGPT,但专门为编程场景优化。它的主要用途包括:代码解释:帮助你理解代码的功能或逻辑。代码生成:根据自然语言描述生成代码片段。代码优化:提供代码优化建议或重构
- Apache Flink流处理框架
weixin_44594317
apacheflink大数据
ApacheFlink是一个分布式流处理框架和数据处理引擎,专注于以低延迟和高吞吐量处理无界和有界的数据流。它可以同时处理流式数据和批处理数据,并且提供强大的容错机制和状态管理功能。Flink常用于实时分析、复杂事件处理(CEP)、机器学习和批量数据处理等场景。1.Flink的核心概念在理解Flink的工作原理之前,先要了解它的一些核心概念:流处理(StreamProcessing):处理数据流中
- 【AI中数学-数理统计-综合实例-包括python实现】 揭开数据的面纱:真实样本数据的探索与可视化
云博士的AI课堂
AI中的数学人工智能python数理统计数据预处理数据探索数据可视化机器学习
第五章:数理统计-综合实例1.揭开数据的面纱:真实样本数据的探索与可视化在人工智能(AI)应用中,数据是构建算法和模型的基石,而数理统计则为我们提供了理解和处理这些数据的工具。数据探索和可视化是数理统计中至关重要的步骤,它们不仅能帮助我们理解数据的分布、关系和趋势,还能够为后续的建模工作提供依据。本节将通过五个实际案例,展示如何使用数理统计和可视化技术对真实样本数据进行探索。每个案例都包括具体的描
- Apache Airflow 全面解析
由数入道
人工智能apacheAirflow
1.Airflow的定义与核心定位ApacheAirflow是一个开源的工作流自动化与调度平台,由Airbnb于2014年创建,2016年进入Apache孵化器,2019年成为顶级项目。其核心设计理念是“WorkflowsasCode”,通过编程方式定义、调度和监控复杂的数据流水线(Pipeline),适用于ETL、机器学习模型训练、数据湖管理、报表生成等场景。2.核心概念与架构解析2.1核心组件
- AI人工智能代理工作流AI Agent WorkFlow:面向服务计算中的代理工作流管理
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能代理工作流AIAgentWorkFlow:面向服务计算中的代理工作流管理关键词:人工智能,代理工作流,服务计算,自动执行,智能调度,协同处理,流程管理1.背景介绍1.1问题的由来随着互联网和云计算的快速发展,服务计算作为一种分布式计算模式,已经成为企业信息化建设的重要方向。在服务计算中,工作流技术被广泛应用于业务流程的建模、执行和管理。然而,传统的基于BPM(业务流程管理)的工作流管理
- OpenAI 函数调用 功能入门
AI火箭
chatgptopenai
Javascript版Langchain入门作者:AI小火箭的HB我是AI小火箭的HB,我探索和写作人工智能和语言交叉点的所有事物,范围从LLM,聊天机器人,语音机器人,开发框架,以数据为中心的潜在空间等。介绍LangChain是一个开源Python库,用于构建由大型语言模型(LLM)支持的应用程序。它提供了一个框架,将LLM与其他数据源(如互联网或个人文件)连接起来,允许开发人员将多个命令链接在
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数