第一步:准备数据
5种柑橘病虫数据:Fruit-anthrax,Fruit-ulcer,leaf_thyroid,Leaf-anthrax和Leaf-ulcer,总共有3030张图片,每个文件夹单独放一种数据
第二步:搭建模型
本文用的是resnet50模型,其网络结构如下:
模型代码如下:
def resnet_50(IMG_SHAPE=(224, 224, 3), class_num=5):
inpt =Input(shape=IMG_SHAPE)
x = ZeroPadding2D((3, 3))(inpt)
x = Conv2d_BN(x, nb_filter=64, kernel_size=(7, 7), strides=(2, 2), padding='valid')
x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')(x)
#conv2_x
x = bottleneck_Block(x, nb_filters=[64,64,256],strides=(1,1),with_conv_shortcut=True)
x = bottleneck_Block(x, nb_filters=[64,64,256])
x = bottleneck_Block(x, nb_filters=[64,64,256])
#conv3_x
x = bottleneck_Block(x, nb_filters=[128, 128, 512],strides=(2,2),with_conv_shortcut=True)
x = bottleneck_Block(x, nb_filters=[128, 128, 512])
x = bottleneck_Block(x, nb_filters=[128, 128, 512])
x = bottleneck_Block(x, nb_filters=[128, 128, 512])
#conv4_x
x = bottleneck_Block(x, nb_filters=[256, 256, 1024],strides=(2,2),with_conv_shortcut=True)
x = bottleneck_Block(x, nb_filters=[256, 256, 1024])
x = bottleneck_Block(x, nb_filters=[256, 256, 1024])
x = bottleneck_Block(x, nb_filters=[256, 256, 1024])
x = bottleneck_Block(x, nb_filters=[256, 256, 1024])
x = bottleneck_Block(x, nb_filters=[256, 256, 1024])
#conv5_x
x = bottleneck_Block(x, nb_filters=[512, 512, 2048], strides=(2, 2), with_conv_shortcut=True)
x = bottleneck_Block(x, nb_filters=[512, 512, 2048])
x = bottleneck_Block(x, nb_filters=[512, 512, 2048])
x = AveragePooling2D(pool_size=(7, 7))(x)
x = Flatten()(x)
x = Dense(class_num, activation='softmax')(x)
model = Model(inputs=inpt, outputs=x)
# 输出模型信息
model.summary()
# 指明模型的训练参数,优化器为sgd优化器,损失函数为交叉熵损失函数
model.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])
# 返回模型
return model
第三步:训练过程中的部分中间结果
混淆矩阵
正确率和loss变化:
第四步:搭建GUI界面
第六步:整个工程的内容
提供整套,提供测试数据,提供GUI界面代码,主要使用方法可以参考里面的“文档说明_必看.docx”
代码的下载路径(新窗口打开链接):基于深度学习神经网络cnn的柑橘病虫害识别系统源码
有问题可以私信或者留言,有问必答