- 启发式算法(Heuristic Algorithm)
大霸王龙
启发式合集启发式算法python算法
启发式算法(HeuristicAlgorithm)是一类用于解决复杂问题的算法,通过利用问题的某些特征和经验规则,在可接受的时间范围内找到较好的近似解。启发式算法不保证找到最优解,但通常可以在合理的计算时间内获得可行且质量较高的解。启发式算法的思想启发式算法的核心思想是通过利用问题的特定性质和人类的经验,设计出有效的规则或策略,引导搜索过程朝着可能的解空间方向快速前进。其主要特点包括:简化问题:将
- python路线规划_利用Python实现A*算法路径规划
weixin_39664962
python路线规划
一、A*算法介绍A*算法实际上是一种启发式算法,也是路径规划中应用最为普遍的算法之一。A*算法并不是只用于路径规划,同时,路径规划中也不只有A*一种启发式方法。A*算法相比其他路径规划算法,如遗传算法、蚁群算法等,其算法过程较为简单、易于理解,运行速度快。而且,应用A*的路径规划结果也还不错。因此,总体来说,A*算法应该是性价比较高的一种路径规划算法。A*算法的基本思想是,对于当前的搜索点CNod
- 一学就会:A*算法详细介绍(Python)
不去幼儿园
人工智能(AI)#启发式算法算法python人工智能机器学习开发语言
本篇文章是博主人工智能学习以及算法研究时,用于个人学习、研究或者欣赏使用,并基于博主对相关等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅解。文章分类在启发式算法专栏:【人工智能】-【启发式算法】(6)---《一学就会:A*算法详细介绍(Python)》一学就会:A*算法详细介绍(Python)目录A*算法介绍A*算法的核心概念A*算法的特点A*算法示例:迷宫
- 单目标:鹅优化算法
Luis Li 的猫猫
算法matlab推荐算法
一、简介鹅优化算法(GOOSEAlgorithm,GO)是2024年由RebwarKhalidHamad提出的一种群智能优化算法,该成果发表在知名SCI期刊JCQ3区EvolvingSystems上。这是一种基于鹅的休息和觅食行为的新型元启发式算法。二、仿生学原理1.鹅的休息行为鹅休息时会成群聚集,其中一只用单腿保持平衡,守护群体。并且偶尔这只守护鹅会抬起一条腿,扛起一块小石头,睡着时石头掉落它就
- 【收藏不迷路】380种群智能优化算法-Matlab代码免费获取(截至2025.2.14)
88号技师
智能优化算法算法matlab优化算法人工智能
群智能优化算法可以作为很好的工具来解决许多实际问题,如特征选择、图像分割、医学诊断,经济排放调度问题,植物病害识别,工程设计,PID优化控制,设备故障诊断,机器学习模型参数整定等等。在这个领域,有一个理论:没有免费午餐(NoFreeLunch,NFL)理论。它从逻辑上证明了不存在最适合解决所有优化问题的元启发式算法。换句话说,特定的元启发式可能在一组问题上显示出非常有希望的结果,但相同的算法可能在
- 数学与信息系统管理:IT架构的数学优化
AI天才研究院
计算ChatGPTDeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
数学与信息系统管理:IT架构的数学优化关键词:数学优化、信息系统管理、IT架构、线性规划、非线性规划、动态规划、启发式算法摘要:本文深入探讨了数学优化在信息系统管理中的应用及其重要性。首先,回顾了信息系统管理的发展历程和数学优化方法的基本概念,接着介绍了数学优化方法在信息系统管理中的实际应用和面临的挑战。本文通过逐步分析,详细讲解了基础数学知识、线性规划、非线性规划、动态规划和启发式算法等数学优化
- 路径规划之启发式算法之二十九:鸽群算法(Pigeon-inspired Optimization, PIO)
搏博
算法大数据人工智能算法策略模式python机器学习启发式算法
鸽群算法(Pigeon-inspiredOptimization,PIO)是一种基于自然界中鸽子群体行为的智能优化算法,由Duan等人于2014年提出。该算法模拟了鸽子在飞行过程中利用地标、太阳和磁场等导航机制的行为,具有简单、高效和易于实现的特点,适用于解决连续优化问题。更多的仿生群体算法概括可以看我的文章:仿生的群体智能算法总结之一(十种)_最新群体算法-CSDN博客仿生的群体智能算法总结之二
- AI真的能理解我们这个现实物理世界吗?深度剖析原理、实证及未来走向
AI_DL_CODE
人工智能深度学习AIAI理解世界
摘要:当下,AI与深度学习广泛渗透生活各领域,大模型与海量数据加持下,其是否理解现实物理世界引发热议。文章开篇抛出疑问,随后深入介绍AI深度学习基础,包含神经网络架构、反向传播算法。继而列举AI在物理场景识别、实验数据分析中显露的“理解”迹象,也点明常识性错误、极端场景失效这类反例。从信息论、物理启发式算法剖析理论支撑,探讨融合物理知识路径,并延展至跨学科应用、评估维度、伦理社会问题,最终展望AI
- 【算法应用】基于A*-蚁群算法求解无人机城市多任务点配送路径问题
小O的算法实验室
智能算法应用UAV路径规划多目标点路径规划算法多任务点路径规划无人机路径规划
目录1.A星算法原理2.蚁群算法原理3.结果展示4.代码获取1.A星算法原理A*算法是一种基于图搜索的智能启发式算法,它具有高稳定性和高节点搜索效率。主要原理为:以起点作为初始节点,将其加入开放列表。从开放列表中选择具有最小总代价值f(n)f(n)f(n)的节点作为当前节点,其中f(n)f(n)f(n)由实际路径代价g(n)g(n)g(n)和到目标点估计代价h(n)h(n)h(n)组成。检查当前节
- 改进候鸟优化算法之二:基于混沌映射的候鸟优化算法(MBO-CM)
搏博
算法人工智能r语言开发语言算法策略模式
基于混沌映射的候鸟优化算法(MigratingBirdsOptimizationbasedonChaoticMapping,MBO-CM)是一种结合了混沌映射与候鸟优化算法(MigratingBirdsOptimization,MBO)的优化方法。一、候鸟优化算法(MBO)简介候鸟优化算法是一种自然启发的元启发式算法,由Duman等人于2011年(也有说法为2012年)提出。该算法模拟候鸟在迁徙过
- 遗传算法
神罗天征666
c++整理算法
遗传算法(GA)一、什么是遗传算法?遗传算法(GeneticAlgorithm,GA)是一类模仿生物进化过程的搜索启发式算法。它们是由约翰·霍兰德(JohnHolland)在20世纪70年代初提出的。遗传算法通过自然遗传机制(如选择、交叉、变异等)的模拟,对问题的潜在解进行进化,以期找到或逼近最优解。基本原理是类比达尔文进化论—“物竞天择,适者生存”其实很好理解,学过生物的都知道达尔文进化论的大概
- 【MATLAB源码-第157期】基于matlab的海马优化算法(SHO)机器人栅格路径规划,输出做短路径图和适应度曲线。
Matlab程序猿小助手
通信原理算法matlab机器人开发语言信息与通信启发式算法
操作环境:MATLAB2022a1、算法描述海马优化器(SeaHorseOptimizer,SHO)是一种近年来提出的新型启发式算法,其设计灵感来源于海洋中海马的行为模式,特别是它们在寻找食物和伴侣时表现出的独特策略。海马因其独特的外形和行为而著称于世,它们的这些行为为解决复杂的优化问题提供了新的思路。启发式算法通常模拟自然界中生物的行为或自然现象来解决数学和工程中的优化问题,海马优化器正是这样一
- python实现蚁群算法
孺子牛 for world
python算法开发语言
蚁群算法(AntColonyOptimization,ACO)是一种模拟蚂蚁觅食行为的启发式算法,常用于解决优化问题,如旅行商问题(TSP)、调度问题等。这里,将提供一个简化的蚁群算法实现,用于解决旅行商问题(TSP)。蚁群算法(ACO)解决TSP问题的基本步骤:初始化:设置蚂蚁数量、信息素挥发系数、信息素增加强度系数等参数,初始化信息素矩阵。构建解:每只蚂蚁随机选择起点,根据信息素浓度和启发式信
- MATLAB智能优化算法-学习笔记(1)——遗传算法求解0-1背包问题【过程+代码】
郭十六弟
算法matlab学习智能优化算法算法思想遗传算法求解0-1背包问题
一、问题描述(1)数学模型(2)模型总结目标函数:最大化背包中的总价值Z。约束条件:确保背包中的物品总重量不超过容量W。决策变量:每个物品是否放入背包,用0或1表示。这个数学模型是一个典型的0-1整数线性规划问题。由于其NP完全性,当问题规模较大时,求解此问题通常需要使用启发式算法(如遗传算法、动态规划、分支定界法等)来找到近似最优解。(3)实例讲解:0-1背包问题模型手动求解过程在0-1背包问题
- 基于强化学习的制造调度智能优化决策
松间沙路hba
智能调度强化学习制造智能排程车间调度APS强化学习
获取更多资讯,赶快关注上面的公众号吧!文章目录调度状态和动作设计调度状态的设计调度动作的设计基于RL的调度算法基于值函数的RL调度算法SARSAQ-learningDQN基于策略的RL调度算法基于RL的调度应用基于RL的单机调度基于RL的并行机调度基于RL的流水车间调度基于RL的作业车间调度基于RL的其他调度RL与元启发式算法在调度中的集成应用讨论问题领域算法领域应用领域参考文献生产调度作为制造系
- 遗传算法(Genetic Algorithm, GA)附代码案例
Cooku Black
机器学习python高级用法遗传算法启发式算法python
遗传算法(GeneticAlgorithm,GA)简介遗传算法(GeneticAlgorithm,GA)是一种模拟自然选择和遗传学原理的搜索算法,属于进化计算的一种。它是由约翰·霍兰德(JohnHolland)在20世纪70年代提出的,用于解决优化问题,是一种启发式算法。遗传算法的基本思想是通过模拟生物进化过程中的遗传和变异机制来优化问题的解。算法流程初始化:随机生成一组染色体(解的编码),构成初
- 10 中科院1区期刊优化算法|基于开普勒优化-卷积-双向长短期记忆网络-注意力时序预测Matlab程序KOA-CNN-BiLSTM-Attention
机器不会学习CSJ
时间序列预测算法网络matlabcnnlstm深度学习
文章目录一、开普勒优化算法二、CNN卷积神经网络三、BiLSTM双向长短期记忆网络四、注意力机制五、KOA-CNN-BiLSTM-Attention时间序列数据预测模型六、获取方式一、开普勒优化算法基于物理学定律的启发,开普勒优化算法(KeplerOptimizationAlgorithm,KOA)是一种元启发式算法,灵感来源于开普勒的行星运动规律。该算法模拟行星在不同时间的位置和速度,每个行星代
- 遗传算法实现
qq_51497433
matlab开发语言算法
遗传算法(GeneticAlgorithm,GA)是一种模拟自然选择和遗传学原理的搜索启发式算法,它是由约翰·霍兰德(JohnHolland)在20世纪70年代提出的。遗传算法在解决优化和搜索问题时非常有效,特别是在解空间大且复杂时。该算法使用了生物进化中的选择、交叉(杂交)和变异等概念。遗传算法通常包括以下步骤:初始化:随机生成一个初始种群。种群由一定数量的个体组成,每个个体代表一个解。评估:计
- 【MATLAB源码-第138期】基于matlab的D2D蜂窝通信仿真,对比启发式算法,最优化算法和随机算法的性能。
Matlab程序猿
通信系统MATLAB通信原理matlab信息与通信算法
操作环境:MATLAB2022a1、算法描述D2D蜂窝通信介绍D2D蜂窝通信允许在同一蜂窝网络覆盖区域内的终端设备直接相互通信,而无需数据经过基站或网络核心部分转发。这种通信模式具有几个显著优点:首先,它可以显著降低通信延迟,因为数据传输路径更短;其次,由于减少了基站的中转,可以提高数据传输的能效,从而延长终端设备的电池寿命;再次,D2D通信可以提高系统容量和频谱效率,因为同一地理区域内的频谱可以
- beamsearch的计算过程和代码实现
浅白Coder
自然语言处理自然语言处理深度学习人工智能神经网络
Beamsearch(束搜索)是一种用于生成序列的搜索算法,常用于序列生成任务,例如机器翻译、语音识别和文本生成。它是一种启发式算法,旨在在生成序列时平衡搜索空间的广度和深度。Beamsearch使用一个参数称为"beamwidth"(束宽度)来控制搜索的宽度,即在每个时间步骤选择保留的最有希望的候选项数量。在每个时间步骤,Beamsearch保留最有希望的K个候选项,其中K是束宽度。下面是Bea
- 矩形排料算法
monk比丘
笔记
这几天研究矩形排料(下料、排样)问题。通过对矩形的宽高聚类得到一个启发式算法,能实现很好的排样效果。
- 启发式算法
Sanchez·J
美赛启发式算法算法python数学建模
引入以一个著名的问题为例——旅行商问题(TSP)。假设有一个商人要拜访N个城市,每个城市只能拜访一次,最后回到原来出发的城市,求最短路径。这是一个NP-hard问题,即目前来看,要求出最优解只能枚举,复杂度为。n只要稍微大一点,就会无法在正常时间内求出来。现在我们退一步,要求在一定时间内求出来,但不要求最优的解,只要一个相对比较优秀的解就行,这就引出了启发式算法。启发式算法基于直观或经验构造的算法
- 2024年新提出的算法:(凤头豪猪优化器)冠豪猪优化算法Crested Porcupine Optimizer(附Matlab代码)
群智算法小狂人
智能优化算法元启发式算法算法matlab数学建模
本次介绍一种新的自然启发式元启发式算法——凤头豪猪优化器(CrestedPorcupineOptimizer,CPO)。该成果于2024年1月发表在中科院1区SCItop期刊Knowledge-BasedSystems(IF=8.8)上。1、简介受到凤头豪猪(CP)各种防御行为的启发,用于精确优化各种优化问题,特别是那些具有大规模攻击的问题。从最不具攻击性到最具攻击性,冠豪猪使用四种不同的保护机制
- 优化算法改进的三个定性分析实验:收敛行为分析,种群多样性分析和探索开发分析
树洞优码
算法matlab启发式算法代码规范
蛇优化算法是2022年提出的一种新的元启发式算法,发表在一区期刊Knowledge-BasedSystems,该算法是一种模仿蛇特殊交配行为的新型智能优化算法。对于每条蛇(雄性/雌性),如果在食物数量足够,温度很低的条件下,就会努力得到最好的伴侣。本期以蛇优化器SnakeOptimizer(SO)为例,在23个基准测试函数上进行定性分析实验,这三个实验可以大大增加论文的说服力和提升文章质量,可以增
- Linux调度-反转楼梯最后期限调度算法
人间正道是沧桑a
(反转楼梯最后期限调度算法)TheRotatingStaircaseDeadlineScheduler简称RSDLCPU调度似乎是那些永远未完成的工作之一。开发人员可以在CPU调度器上工作一段时间,并使其工作得更好,但总有一些工作负载不能像用户希望的那样得到很好的服务。交互系统的用户尤其倾向于对调度器延迟敏感。作为回应,当前的调度器已经发展出一组精心设计的启发式算法,它们试图检测哪些进程是真正交互
- 2019-03-28派森学习第129天
每日派森
帮师妹装了一晚上tensorflow,按照自己的前天安装的流程总还会报错,在加上她的电脑特别慢,真无语了!今晚学习一会儿模拟退火算法吧,白天都搜索了,一直没有来的及学习。5种启发式算法:1首先要明白全局最小和全局极小值:2模拟退火算法的基本思想:在每一步都有一定概率接受比当前更差的结果,从而有助于跳出局部极小值,找到全局最小值。算法框图
- 2024年新提出的算法:一种新的基于数学的优化算法——牛顿-拉夫森优化算法|Newton-Raphson-based optimizer,NRBO
项目申报小狂人
智能优化算法元启发式算法MATLAB算法数学建模
1、简介开发了一种新的元启发式算法——Newton-Raphson-Based优化器(NRBO)。NRBO受到Newton-Raphson方法的启发,它使用两个规则:Newton-Raphson搜索规则(NRSR)和TrapAvoidance算子(TAO)以及几组矩阵来探索整个搜索过程,以进一步探索最佳结果。NRSR使用Newton-Raphson方法来提高NRBO的探索能力,并提高收敛速度以达到
- 2020-05-20
bokli_dw
启发式算法:与过去的经验有关空缺几页少一张回顾遗传算法:交叉变异的概率每年考试是开卷做控制、天线、光通信。你的研究方向是什么?你觉得哪门智能信息处理方法可以在你的研究方向上很有帮助??第九章多传感器融合技术知识表示-模糊集-粗集神经网络-机器学习最重要的是搜索--智能算法:遗传、免疫、蚁群算法。每个算法在哪方面运用起来最得心应手就用哪个fusion--融合无人驾驶:融合很多的信息--信息融合是将来
- 启发式算法解决TSP、0/1背包和电路板问题
NK.MainJay
启发式算法算法
1.LasVegas题目设计一个LasVegas随机算法,求解电路板布线问题。将该算法与分支限界算法结合,观察求解效率。代码python代码如下:#-*-coding:utf-8-*-"""@Date:2024/1/4@Time:16:21@Author:MainJay@Desc:LasVegas算法解决电路问题"""importheapqimportrandommaps=[]nums=8fori
- 基于黄金正弦算法的函数寻优算法
心️升明月
最优化问题matlabmatlab黄金正弦算法
文章目录一、理论基础1、算法原理2、算法伪代码二、仿真实验与分析三、参考文献一、理论基础1、算法原理黄金正弦算法(Goldensinealgorithm,Gold-SA)是Tanyildizi等人于2017年提出的新型元启发式算法,该算法的设计灵感来源于数学中的正弦函数,该算法利用数学中的正弦函数进行计算迭代寻优,其优点是收敛速度快、鲁棒性好、易于实现、调节的参数和运算符少。Gold-SA根据正弦
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理