YOLOv8 Ultralytics:使用Ultralytics框架进行FastSAM图像分割

YOLOv8 Ultralytics:使用Ultralytics框架进行FastSAM图像分割

  • 前言
  • 相关介绍
  • 前提条件
  • 实验环境
  • 安装环境
  • 项目地址
    • Linux
    • Windows
  • 使用Ultralytics框架进行FastSAM图像分割
  • 参考文献

YOLOv8 Ultralytics:使用Ultralytics框架进行FastSAM图像分割_第1张图片
YOLOv8 Ultralytics:使用Ultralytics框架进行FastSAM图像分割_第2张图片
YOLOv8 Ultralytics:使用Ultralytics框架进行FastSAM图像分割_第3张图片

前言

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

相关介绍

  • YOLOv8是YOLO系列实时目标检测器的最新版本,在准确性和速度方面提供了尖端的性能。基于以前的YOLO版本的进步,YOLOv8引入了新的功能和优化,使其成为各种应用中各种目标检测任务的理想选择。
  • YOLOv8官方文档:https://docs.ultralytics.com/
  • Segment Anything Model(SAM)是一种尖端的图像分割模型,可以进行快速分割,为图像分析任务提供无与伦比的多功能性。SAM 构成了 Segment Anything 计划的核心,这是一个开创性的项目,引入了用于图像分割的新颖模型、任务和数据集。
  • SAM 的先进设计使其能够在无需先验知识的情况下适应新的图像分布和任务,这一功能称为零样本传输。SAM 在庞大的SA-1B 数据集上进行训练,该数据集包含超过 10 亿个掩模,分布在 1100 万张精心策划的图像中,SAM 表现出了令人印象深刻的零样本性能,在许多情况下超越了之前完全监督的结果。
  • Segment Anything Model (SAM) 的主要特征
    • 即时分割任务: SAM 在设计时考虑了即时分割任务,允许它根据任何给定的提示生成有效的分割掩码,例如识别对象的空间或文本线索。
    • 高级架构: Segment Anything Model 采用强大的图像编码器、提示编码器和轻量级掩模解码器。这种独特的架构可以在分割任务中实现灵活的提示、实时掩模计算和歧义感知。
    • SA-1B 数据集: SA-1B 数据集由 Segment Anything 项目引入,在 1100 万张图像上包含超过 10 亿个掩模。作为迄今为止最大的分割数据集,它为 SAM 提供了多样化、大规模的训练数据源。
    • 零样本性能: SAM 在各种分段任务中显示出出色的零样本性能,使其成为适用于各种应用的即用型工具,并且对快速工程的需求极小。
  • 要深入了解 Segment Anything 模型和 SA-1B 数据集,请访问Segment Anything 网站并查看研究论文Segment Anything。
  • Fast Segment Anything Model (FastSAM) 是一种新颖的、基于 CNN 的实时解决方案,适用于 Segment Anything 任务。此任务旨在根据各种可能的用户交互提示来分割图像中的任何对象。FastSAM 显着降低了计算需求,同时保持了具有竞争力的性能,使其成为各种视觉任务的实用选择。
    YOLOv8 Ultralytics:使用Ultralytics框架进行FastSAM图像分割_第4张图片
  • FastSAM 旨在解决Segment Anything Model (SAM) 的局限性,SAM 是一种需要大量计算资源的重型 Transformer 模型。FastSAM 将分段任何任务解耦为两个连续阶段:全实例分段和提示引导选择。第一阶段使用YOLOv8-seg生成图像中所有实例的分割掩模。在第二阶段,它输出与提示相对应的感兴趣区域。
  • 主要特征
    • 实时解决方案:通过利用 CNN 的计算效率,FastSAM 为分段任务提供实时解决方案,使其对于需要快速结果的工业应用很有价值。
    • 效率和性能: FastSAM 在不影响性能质量的情况下显着减少了计算和资源需求。它实现了与 SAM 相当的性能,但大大减少了计算资源,从而实现了实时应用。
    • 提示引导的分割: FastSAM 可以在各种可能的用户交互提示的引导下分割图像中的任何对象,从而在不同场景下提供灵活性和适应性。
    • 基于 YOLOv8-seg: FastSAM 基于YOLOv8-seg,这是一个配备实例分割分支的对象检测器。这使得它能够有效地生成图像中所有实例的分割掩模。
    • 基准竞争结果:在 MS COCO 上的对象提议任务中, FastSAM在单个 NVIDIA RTX 3090 上以明显更快的速度获得了高分,展示了其效率和能力。
    • 实际应用:所提出的方法以非常高的速度(比当前方法快数十或数百倍)为大量视觉任务提供了一种新的实用解决方案。
    • 模型压缩可行性: FastSAM 展示了一种路径的可行性,该路径可以通过在结构之前引入人工先验来显着减少计算工作量,从而为一般视觉任务的大型模型架构开辟新的可能性。

前提条件

  • 熟悉Python

实验环境

matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.6.0
Pillow>=7.1.2
PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.64.0
tensorboard>=2.4.1
pandas>=1.1.4
seaborn>=0.11.0

安装环境

pip install ultralytics
# 或者
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple # 国内清华源,下载速度更快

在这里插入图片描述

在这里插入图片描述

项目地址

  • 官方YOLOv8源代码地址:https://github.com/ultralytics/ultralytics.git

Linux

git clone https://github.com/ultralytics/ultralytics.git
Cloning into 'ultralytics'...
remote: Enumerating objects: 4583, done.
remote: Counting objects: 100% (4583/4583), done.
remote: Compressing objects: 100% (1270/1270), done.
remote: Total 4583 (delta 2981), reused 4576 (delta 2979), pack-reused 0
Receiving objects: 100% (4583/4583), 23.95 MiB | 1.55 MiB/s, done.
Resolving deltas: 100% (2981/2981), done.

Windows

请到https://github.com/ultralytics/ultralytics.git网站下载源代码zip压缩包。

使用Ultralytics框架进行FastSAM图像分割

YOLOv8 Ultralytics:使用Ultralytics框架进行FastSAM图像分割_第5张图片

yolo predict model=FastSAM-s.pt source=images/bird.jpeg

在这里插入图片描述

YOLOv8 Ultralytics:使用Ultralytics框架进行FastSAM图像分割_第6张图片

参考文献

[1] YOLOv8 源代码地址:https://github.com/ultralytics/ultralytics.git.
[2] YOLOv8 Docs:https://docs.ultralytics.com/
[3] https://docs.ultralytics.com/models/fast-sam/
[4] https://github.com/CASIA-IVA-Lab/FastSAM
[5] https://arxiv.org/abs/2306.12156
[6] Xu Zhao, Wenchao Ding, Yongqi An, Yinglong Du, Tao Yu, Min Li, Ming Tang, Jinqiao Wang. Fast Segment Anything. 2023

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

你可能感兴趣的:(YOLO系列,YOLO,人工智能,目标检测,pytorch,图像分割)