时间序列(Time-Series)AutoCorrelation.py代码解析

import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
import math
from math import sqrt
import os


class AutoCorrelation(nn.Module):
    """
    AutoCorrelation Mechanism with the following two phases:
    (1) period-based dependencies discovery
    (2) time delay aggregation
    This block can replace the self-attention family mechanism seamlessly.
    """
    #构造函数
    def __init__(self, mask_flag=True, factor=1, scale=None, attention_dropout=0.1, output_attention=False):
        super(AutoCorrelation, self).__init__()
        self.factor = factor    #缩放因子
        self.scale = scale      #尺度
        self.mask_flag = mask_flag                   #掩码
        self.output_attention = output_attention     #注意力权重
        self.dropout = nn.Dropout(attention_dropout) #注意力机制的dropout率
    #实现自相关的训练聚合,该方法首先要找到最重要的时间延迟,然后根据延迟进行聚合
    def time_delay_agg_training(self, values, corr):
        """
        SpeedUp version of Autocorrelation (a batch-normalization style design)
        This is for the training phase.
        """
        head = values.shape[1]
        channel = values.shape[2]
        length = values.shape[3]
        # find top k
        top_k = int(self.factor * math.log(length))
        mean_value = torch.mean(torch.mean(corr, dim=1), dim=1)
        index = torch.topk(torch.mean(mean_value, dim=0), top_k, dim=-1)[1]
        weights = torch.stack([mean_value[:, index[i]] for i in range(top_k)], dim=-1)
        # update corr
        tmp_corr = torch.softmax(weights, dim=-1)
        # aggregation
        tmp_values = values
        delays_agg = torch.zeros_like(values).float()
        for i in range(top_k):
            pattern = torch.roll(tmp_values, -int(index[i]), -1)
            delays_agg = delays_agg + pattern * \
                         (tmp_corr[:, i].unsqueeze(1).unsqueeze(1).unsqueeze(1).repeat(1, head, channel, length))
        return delays_agg
    #用于推断阶段,处理值和相关性,以计算时间延迟的聚合
    def time_delay_agg_inference(self, values, corr):
        """
        SpeedUp version of Autocorrelation (a batch-normalization style design)
        This is for the inference phase.
        """
        batch = values.shape[0]
        head = values.shape[1]
        channel = values.shape[2]
        length = values.shape[3]
        # index init
        #init_index = torch.arange(length).unsqueeze(0).unsqueeze(0).unsqueeze(0).repeat(batch, head, channel, 1).cuda()
        init_index = torch.arange(length).unsqueeze(0).unsqueeze(0).unsqueeze(0).repeat(batch, head, channel, 1)
        # find top k
        top_k = int(self.factor * math.log(length))
        mean_value = torch.mean(torch.mean(corr, dim=1), dim=1)
        weights, delay = torch.topk(mean_value, top_k, dim=-1)
        # update corr
        tmp_corr = torch.softmax(weights, dim=-1)
        # aggregation
        tmp_values = values.repeat(1, 1, 1, 2)
        delays_agg = torch.zeros_like(values).float()
        for i in range(top_k):
            tmp_delay = init_index + delay[:, i].unsqueeze(1).unsqueeze(1).unsqueeze(1).repeat(1, head, channel, length)
            pattern = torch.gather(tmp_values, dim=-1, index=tmp_delay)
            delays_agg = delays_agg + pattern * \
                         (tmp_corr[:, i].unsqueeze(1).unsqueeze(1).unsqueeze(1).repeat(1, head, channel, length))
        return delays_agg

    #实现标准自相关的方法,不进行任何类型的优化
    def time_delay_agg_full(self, values, corr):
        """
        Standard version of Autocorrelation
        """
        batch = values.shape[0]
        head = values.shape[1]
        channel = values.shape[2]
        length = values.shape[3]
        # index init
        init_index = torch.arange(length).unsqueeze(0).unsqueeze(0).unsqueeze(0).repeat(batch, head, channel, 1).cuda()
        # find top k
        top_k = int(self.factor * math.log(length))
        weights, delay = torch.topk(corr, top_k, dim=-1)
        # update corr
        tmp_corr = torch.softmax(weights, dim=-1)
        # aggregation
        tmp_values = values.repeat(1, 1, 1, 2)
        delays_agg = torch.zeros_like(values).float()
        for i in range(top_k):
            tmp_delay = init_index + delay[..., i].unsqueeze(-1)
            pattern = torch.gather(tmp_values, dim=-1, index=tmp_delay)
            delays_agg = delays_agg + pattern * (tmp_corr[..., i].unsqueeze(-1))
        return delays_agg
    #这是 AutoCorrelation 类的核心,PyTorch在模型前向传播时自动调用它。它接受查询 (queries),键 (keys),值 (values) 以及注意力掩码 (attn_mask),应用傅立叶变换来发现周期性依赖,然后使用聚合函数来处理时间延迟。
    def forward(self, queries, keys, values, attn_mask):
        B, L, H, E = queries.shape
        _, S, _, D = values.shape
        if L > S:
            zeros = torch.zeros_like(queries[:, :(L - S), :]).float()
            values = torch.cat([values, zeros], dim=1)
            keys = torch.cat([keys, zeros], dim=1)
        else:
            values = values[:, :L, :, :]
            keys = keys[:, :L, :, :]

        # period-based dependencies
        q_fft = torch.fft.rfft(queries.permute(0, 2, 3, 1).contiguous(), dim=-1)
        k_fft = torch.fft.rfft(keys.permute(0, 2, 3, 1).contiguous(), dim=-1)
        res = q_fft * torch.conj(k_fft)
        corr = torch.fft.irfft(res, dim=-1)

        # time delay agg
        if self.training:
            V = self.time_delay_agg_training(values.permute(0, 2, 3, 1).contiguous(), corr).permute(0, 3, 1, 2)
        else:
            V = self.time_delay_agg_inference(values.permute(0, 2, 3, 1).contiguous(), corr).permute(0, 3, 1, 2)

        if self.output_attention:
            return (V.contiguous(), corr.permute(0, 3, 1, 2))
        else:
            return (V.contiguous(), None)

#提供完整的注意力层接口
class AutoCorrelationLayer(nn.Module):
    def __init__(self, correlation, d_model, n_heads, d_keys=None,
                 d_values=None):
        super(AutoCorrelationLayer, self).__init__()

        d_keys = d_keys or (d_model // n_heads)
        d_values = d_values or (d_model // n_heads)

        self.inner_correlation = correlation
        self.query_projection = nn.Linear(d_model, d_keys * n_heads)
        self.key_projection = nn.Linear(d_model, d_keys * n_heads)
        self.value_projection = nn.Linear(d_model, d_values * n_heads)
        self.out_projection = nn.Linear(d_values * n_heads, d_model)
        self.n_heads = n_heads

    def forward(self, queries, keys, values, attn_mask):
        B, L, _ = queries.shape
        _, S, _ = keys.shape
        H = self.n_heads

        queries = self.query_projection(queries).view(B, L, H, -1)
        keys = self.key_projection(keys).view(B, S, H, -1)
        values = self.value_projection(values).view(B, S, H, -1)

        out, attn = self.inner_correlation(
            queries,
            keys,
            values,
            attn_mask
        )
        out = out.view(B, L, -1)

        return self.out_projection(out), attn
 

你可能感兴趣的:(算法,人工智能,Time,Series,深度学习,人工智能,python)