- 211本硕二战腾讯大模型算法岗,已凉......
AI大模型入门
算法阿里云人工智能云计算目标跟踪
01背景本弱鸡211本硕,nlp,无论文有实习(老板没资源且放养),本科有acm经历(1铜),面试pcg日常实习。02技术一面(时长1h)Q1:了解什么机器学习算法,讲一下原理?当时只记得实体识别用到了隐马尔可夫模型,讲了讲怎么怎么定义观测状态和隐藏状态、前向传播、解码和应用场景。Q2:讲一下Bert的结构和怎么训练的,怎么用bert做下游任务?八股,双向transformerencoder结构,
- 复杂查询优化:避免 SQL 查询中的 N+1 查询问题
檐角小猫
sql数据库
在SQL查询优化中,N+1查询问题是一个常见的性能问题,特别是在关系型数据库中。当你的查询不当时,可能会导致对数据库进行大量的额外查询,造成不必要的性能损耗。什么是N+1查询问题?N+1查询问题通常出现在一对多或多对多的关系中。例如,假设你有一个包含用户和订单的数据库模型:一个用户(User)可以有多个订单(Order),即User和Order是一对多的关系。你需要查询所有用户及其相关的订单。一个
- 体验字节跳动豆包AI大模型生成Python绘制三维等高线图
「已注销」
人工智能matlab开发语言
在Python中,要绘制三维等高线图,可以使用matplotlib库的contour函数和mplot3d工具包。下面是一个绘制三维等高线图的示例代码:importnumpyasnpimportmatplotlib.pyplotaspltdefplot_3d_contour(X,Y,Z,levels):#创建新的图形fig=plt.figure()ax=fig.add_subplot(111,pro
- 如何评价GPT-4o?
109702008
人工智能杂谈人工智能
GPT-4o:开启全新理解与生成语言的篇章在近年来的AI发展中,GPT模型赫然矗立,在自然语言处理任务中刷新了人们的认知,一路从GPT-1演进到如今的GPT-4o。从GPT-1到GPT-4,我们可以看到模型的层数和参数量在持续增长,其理解和生成语言的能力也在不断提升。不过,GPT-4o的出现,无疑在这个演进过程中带来了重要的突破。相比之前的版本,GPT-4o在技术上有了更深的配备。特别是在自然语言
- <论文>如何将RAG和时序大模型相结合?
CM莫问
文献简录人工智能深度学习算法时间序列RAG大模型
一、摘要本文介绍论文发表于2024年的论文《RetrievalAugmentedTimeSeriesForecasting》,该论文提出了将RAG技术应用于时序大模型的策略,提升了时序大模型的性能。译文:检索增强生成(RAG)是现代大型语言模型系统的核心组件,特别是在需要最新信息以准确响应用户查询或查询超出训练数据范围的情况下。时间序列基础模型(TSFM)的出现,如Chronos,以及在各种时间序
- Qwen-VL环境搭建&推理测试
要养家的程序猿
AI算法python计算机视觉ai
引子这几天阿里的Qwen2.5大模型在大模型圈引起了轰动,号称地表最强中文大模型。前面几篇也写了QWen的微调等,视觉语言模型也写了一篇CogVLM,感兴趣的小伙伴可以移步Qwen1.5微调-CSDN博客。前面也写过一篇智谱AI的视觉大模型(CogVLM/CogAgent环境搭建&推理测试-CSDN博客)。Qwen-VL是阿里云研发的大规模视觉语言模型(LargeVisionLanguageMod
- Java - 文字识别 ;示例代码基于SpringAI和国产大模型
沈询-阿里
microsoft机器学习人工智能后端
文字识别在Java开发中的应用在Java开发中,将图像中的文字进行识别能力被广泛应用于多种场景,比如自动审核图片内容、商品搜索分析等。过去,这类需求主要通过OCR(光学字符识别)技术来实现,但其对于复杂图像的处理效果往往不尽人意。如今,随着大模型技术的发展,利用这些先进的AI模型进行文字识别成为可能,不仅大大提升了识别精度和速度,还能更好地理解图像中的复杂信息,为用户提供更加准确可靠的服务。本文采
- VLM 系列——Qwen2 VL——论文解读——前瞻(源码解读)
TigerZ*
AIGC算法AIGC人工智能transformer计算机视觉图像处理
一、概述1、是什么是一系列多模态大型语言模型(MLLM),其中包括2B、7B、72B三个版本,整体采用视觉编码器+LLM形式(可以认为没有任何投射层)。比较创新的是图像缩放方式+3DLLM位置编码+(预估后面的训练方式也不太一样)。能够处理包括文本、图像在内的多种数据类型,具备图片描述、单图文问答、多图问对话、视频理解对话、json格式、多语言、agent、高清图理解(代码编写和debug论文暂时
- 设计一个流程来生成测试模型安全性的问题以及验证模型是否安全
MonkeyKing.sun
模型安全ollamallama3.3
要使用Ollama运行llama3.3:70b模型,并设计一个流程来生成测试模型安全性的问题以及验证模型是否安全,可以按照以下步骤进行设计和实现。整个过程包括环境配置、设计安全测试提示词、执行测试以及分析结果。以下是详细的步骤和指导:1.环境配置1.1安装Ollama首先,确保你的系统上已经安装了Ollama。如果尚未安装,可以按照以下步骤进行安装:下载Ollama:访问Ollama官网下载适用于
- YOLOv11改进策略【Neck】| TPAMI 2024 FreqFusion 频域感知特征融合模块 解决密集图像预测问题
Limiiiing
YOLOv11改进专栏YOLO深度学习计算机视觉目标检测
一、本文介绍本文主要利用FreqFusion结构改进YOLOv11的目标检测网络模型。FreqFusion结构针对传统特征融合在密集图像预测中存在的问题,创新性地引入自适应低通滤波器生成器、偏移量生成器和自适应高通滤波器生成器。将FreqFusion应用于YOLOv11的改进过程中,能够使模型在处理复杂场景图像时,更精准地聚焦目标物体边界,减少背景噪声干扰,显著强化目标物体边界特征表达,进而提升模
- 深度学习每周学习总结R4(LSTM-实现糖尿病探索与预测)
大地之灯
每周深度学习总结深度学习学习lstm人工智能算法
本文为365天深度学习训练营中的学习记录博客R6中的内容,为了便于自己整理总结起名为R4原作者:K同学啊|接辅导、项目定制目录0.总结1.LSTM介绍LSTM的基本组成部分如何理解与应用LSTM2.数据预处理3.数据集构建4.定义模型5.初始化模型及优化器6.训练函数7.测试函数8.训练过程9.模型评估0.总结数据导入及处理部分:在PyTorch中,我们通常先将NumPy数组转换为torch.Te
- SGCN模型详解及代码复现
呆头鹅AI工作室
深度学习算法详解及代码复现深度学习人工智能自然语言处理神经网络python
模型背景SGCN模型源于2018年ICDM会议的一项开创性研究,旨在解决传统图卷积网络(GCNs)在处理签名图时面临的挑战。签名图包含正负链接,反映实体间复杂的相互作用,如社交媒体中的点赞和屏蔽关系。SGCN通过巧妙结合平衡理论和图卷积操作,实现了对正负链接的有效处理,在节点表示学习任务中展现出卓越性能,为社交网络分析、链接预测和社区检测等领域提供了新思路。核心思想SGCN模型的核心思想在于其创新
- Debug智能体对比传统Debug的优势在哪?
文心快码(BaiduComate)是基于百度文心大模型,在研发全流程全场景下为开发者提供辅助建议的智能代码助手。结合百度积累多年的编程现场大数据、外部优秀开源数据,可为开发者生成更符合实际研发场景的优秀代码,提升编码效率,释放“十倍”软件生产力。如果您对【文心快码企业版】感兴趣,希望获取更多详细信息,点击进入企业服务咨询我们会尽快安排专业人员与您取得联系!我们期待与您建立联系,为您的企业带来更高效
- Python小项目:利用U-net完成细胞图像分割
利用U-Net完成细胞图像分割的详细指南在生物医学领域,细胞图像分割是一个关键步骤,能够帮助研究人员分析细胞结构和功能。U-Net作为一种强大的卷积神经网络结构,广泛应用于医学图像分割任务。本文将详细介绍如何利用U-Net完成细胞图像分割项目,涵盖从数据准备到模型部署的各个步骤。项目步骤概览数据准备数据预处理构建U-Net模型训练模型模型评估图像分割结果可视化调优和优化部署和应用1.数据准备收集数
- 开源 多模态 大模型架构深度分析 2024
AI大模型 lose and dream
开源架构学习langchainprompt人工智能开发语言
1.典型开源多模态大模型(1)KOSMOS-2KOSMOS-2是微软亚洲研究院在KOSMOS-1模型的基础上开发的多模态大模型。其中,KOSMOS-1是在大规模多模态数据集上重头训练的,该模型具有类似GPT-4的多模态能力,可以感知一般的感官模态,在上下文中学习(即少样本学习)并能够遵循语音指示(即零样本学习)。KOSMOS-2采用与KOSMOS-1相同的模型架构和训练目标对模型进行训练,并在此基
- 应急救援路径规划中的蚁群算法与路径评价研究【附代码】
拉勾科研工作室
算法
数据科学与大数据专业|数据分析与模型构建|数据驱动决策✨专业领域:数据挖掘与清洗大数据处理与存储技术机器学习与深度学习模型数据可视化与报告生成分布式计算与云计算数据安全与隐私保护擅长工具:Python/R/Matlab数据分析与建模Hadoop/Spark大数据处理平台SQL数据库管理与优化Tableau/PowerBI数据可视化工具TensorFlow/PyTorch深度学习框架✅具体问题可以私
- 一起学Hugging Face Transformers(8)- 使用Transformers 库制作一个简易问答系统
做个天秤座的程序猿
HuggingFaceTransformersAutoModelAutoTokenizerTransformerstransformer
文章目录前言一、环境准备二、数据准备三、模型选择与加载四、构建问答系统五、模型评估与优化六、部署问答系统七、实际案例分析总结参考资料前言问答系统是一种能够自动回答用户问题的人工智能应用,在许多领域具有重要的应用价值,如客户服务、教育和医疗等。HuggingFaceTransformers库是一个强大的工具,它提供了许多预训练的自然语言处理模型,简化了构建问答系统的过程。本文将介绍如何使用Huggi
- 多模态模型基础
谁怕平生太急
大模型论文阅读大模型qwenqwenvl
资料ViT:https://zhuanlan.zhihu.com/p/657666107ViT的位置编码:https://blog.csdn.net/qq_44166630/article/details/127429697Clip:https://zhuanlan.zhihu.com/p/660476765QwenVL:https://blog.csdn.net/qq_35812205/arti
- 探索Qwen-VL:一个全栈式的视觉语言模型开发框架
钟洁祺
探索Qwen-VL:一个全栈式的视觉语言模型开发框架Qwen-VLTheofficialrepoofQwen-VL(通义千问-VL)chat&pretrainedlargevisionlanguagemodelproposedbyAlibabaCloud.项目地址:https://gitcode.com/gh_mirrors/qw/Qwen-VL项目简介是一款由QwenLM开发的全栈式视觉语言(V
- 智创 AI 新视界 -- 优化 AI 模型训练效率的策略与技巧(16 - 1)
青云交
AI&人工智能#智创AI新视界AI模型训练数据预处理模型架构优化超参数调优训练效率提升数据增强模型剪枝人工智能
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- Node.js 单线程模型如何处理高并发?
引言Node.js是一个基于事件驱动、非阻塞I/O模型的运行时环境,这让它在处理高并发任务时表现出色。然而,与传统多线程模型不同,Node.js使用单线程架构,这让许多开发者在初学时感到困惑:单线程如何处理大量并发请求而不会阻塞呢?本文将聚焦于这个问题,解析Node.js单线程模型的核心机制,以及它在高并发场景中的应用和优势。Node.js的事件循环:单线程的秘密武器Node.js的单线程模型是建
- 搭建个人AI知识库:RAG与本地模型实践指南
ai开发知识库
引言你是否想过拥有一个私人订制的AI助手,能够随时为你提供最个性化的信息?本文将带你一步步搭建一个基于本地模型和RAG技术的个人知识库。搭建本地模型环境os:archlinux内存:32gcpu:6核12线程python:3.12.7docker27.3.1+docker-compose向量库:milvus2.4.13+attu2.4(客户端)ollamapacman-Sollamasystemc
- Swift Core Data 分阶段迁移
前言在这之前,我发布了一篇文章,在其中解释了如何使用映射模型和自定义迁移策略执行复杂的CoreData迁移。虽然这种方法性能良好且运行良好,但很难维护,不适用于应用程序扩展,并且存在高度的错误风险。例如,对于每个需要自定义迁移的新模型,你需要定义一个映射模型,以定义如何将每个模型的现有版本迁移到新版本。与你可能认为的相反(以及我所认为的),CoreData在跨多个版本进行迁移时并不会按顺序迭代映射
- CSS盒子模型的外边距详解
平常心cyk
css前端
CSS盒子模型的外边距(margin)是控制元素之间间距的重要属性。以下是与CSS盒子模型外边距相关的所有重要知识点:一、外边距的概念外边距是指盒子边框与其他元素边框之间的空白区域。它用于控制元素之间的距离,从而调整页面布局。二、外边距的设置在CSS中,可以使用margin属性或margin-top、margin-right、margin-bottom和margin-left属性来设置外边距。属性
- 如何用JavaScript判断前端应用运行环境(移动平台还是桌面环境)
在多模态模型的架构上,ChatGPT的绘图能力主要依赖以下几个核心组件:跨模态编码器(Cross-ModalEncoder):跨模态编码器的作用是将文本和图像的特征进行对齐。GPT可以将用户输入的文本描述转换为文本特征表示,然后利用跨模态编码器将这些特征映射到图像特征空间。这种方式确保模型能够理解描述性语言中不同细节是如何与图像特征对应的。
- 机器学习与深度学习间关系与区别
ℒℴѵℯ心·动ꦿ໊ོ꫞
人工智能学习深度学习python
一、机器学习概述定义机器学习(MachineLearning,ML)是一种通过数据驱动的方法,利用统计学和计算算法来训练模型,使计算机能够从数据中学习并自动进行预测或决策。机器学习通过分析大量数据样本,识别其中的模式和规律,从而对新的数据进行判断。其核心在于通过训练过程,让模型不断优化和提升其预测准确性。主要类型1.监督学习(SupervisedLearning)监督学习是指在训练数据集中包含输入
- 消息中间件有哪些常见类型
xmh-sxh-1314
java
消息中间件根据其设计理念和用途,可以大致分为以下几种常见类型:点对点消息队列(Point-to-PointMessagingQueues):在这种模型中,消息被发送到特定的队列中,消费者从队列中取出并处理消息。队列中的消息只能被一个消费者消费,消费后即被删除。常见的实现包括IBM的MQSeries、RabbitMQ的部分使用场景等。适用于任务分发、负载均衡等场景。发布/订阅消息模型(Pub/Sub
- LLM 词汇表
落难Coder
LLMsNLP大语言模型大模型llama人工智能
Contextwindow“上下文窗口”是指语言模型在生成新文本时能够回溯和参考的文本量。这不同于语言模型训练时所使用的大量数据集,而是代表了模型的“工作记忆”。较大的上下文窗口可以让模型理解和响应更复杂和更长的提示,而较小的上下文窗口可能会限制模型处理较长提示或在长时间对话中保持连贯性的能力。Fine-tuning微调是使用额外的数据进一步训练预训练语言模型的过程。这使得模型开始表示和模仿微调数
- 探索OpenAI和LangChain的适配器集成:轻松切换模型提供商
nseejrukjhad
langchaineasyui前端python
#探索OpenAI和LangChain的适配器集成:轻松切换模型提供商##引言在人工智能和自然语言处理的世界中,OpenAI的模型提供了强大的能力。然而,随着技术的发展,许多人开始探索其他模型以满足特定需求。LangChain作为一个强大的工具,集成了多种模型提供商,通过提供适配器,简化了不同模型之间的转换。本篇文章将介绍如何使用LangChain的适配器与OpenAI集成,以便轻松切换模型提供商
- 使用Apify加载Twitter消息以进行微调的完整指南
nseejrukjhad
twittereasyui前端python
#使用Apify加载Twitter消息以进行微调的完整指南##引言在自然语言处理领域,微调模型以适应特定任务是提升模型性能的常见方法。本文将介绍如何使用Apify从Twitter导出聊天信息,以便进一步进行微调。##主要内容###使用Apify导出推文首先,我们需要从Twitter导出推文。Apify可以帮助我们做到这一点。通过Apify的强大功能,我们可以批量抓取和导出数据,适用于各类应用场景。
- java解析APK
3213213333332132
javaapklinux解析APK
解析apk有两种方法
1、结合安卓提供apktool工具,用java执行cmd解析命令获取apk信息
2、利用相关jar包里的集成方法解析apk
这里只给出第二种方法,因为第一种方法在linux服务器下会出现不在控制范围之内的结果。
public class ApkUtil
{
/**
* 日志对象
*/
private static Logger
- nginx自定义ip访问N种方法
ronin47
nginx 禁止ip访问
因业务需要,禁止一部分内网访问接口, 由于前端架了F5,直接用deny或allow是不行的,这是因为直接获取的前端F5的地址。
所以开始思考有哪些主案可以实现这样的需求,目前可实施的是三种:
一:把ip段放在redis里,写一段lua
二:利用geo传递变量,写一段
- mysql timestamp类型字段的CURRENT_TIMESTAMP与ON UPDATE CURRENT_TIMESTAMP属性
dcj3sjt126com
mysql
timestamp有两个属性,分别是CURRENT_TIMESTAMP 和ON UPDATE CURRENT_TIMESTAMP两种,使用情况分别如下:
1.
CURRENT_TIMESTAMP
当要向数据库执行insert操作时,如果有个timestamp字段属性设为
CURRENT_TIMESTAMP,则无论这
- struts2+spring+hibernate分页显示
171815164
Hibernate
分页显示一直是web开发中一大烦琐的难题,传统的网页设计只在一个JSP或者ASP页面中书写所有关于数据库操作的代码,那样做分页可能简单一点,但当把网站分层开发后,分页就比较困难了,下面是我做Spring+Hibernate+Struts2项目时设计的分页代码,与大家分享交流。
1、DAO层接口的设计,在MemberDao接口中定义了如下两个方法:
public in
- 构建自己的Wrapper应用
g21121
rap
我们已经了解Wrapper的目录结构,下面可是正式利用Wrapper来包装我们自己的应用,这里假设Wrapper的安装目录为:/usr/local/wrapper。
首先,创建项目应用
&nb
- [简单]工作记录_多线程相关
53873039oycg
多线程
最近遇到多线程的问题,原来使用异步请求多个接口(n*3次请求) 方案一 使用多线程一次返回数据,最开始是使用5个线程,一个线程顺序请求3个接口,超时终止返回 缺点 测试发现必须3个接
- 调试jdk中的源码,查看jdk局部变量
程序员是怎么炼成的
jdk 源码
转自:http://www.douban.com/note/211369821/
学习jdk源码时使用--
学习java最好的办法就是看jdk源代码,面对浩瀚的jdk(光源码就有40M多,比一个大型网站的源码都多)从何入手呢,要是能单步调试跟进到jdk源码里并且能查看其中的局部变量最好了。
可惜的是sun提供的jdk并不能查看运行中的局部变量
- Oracle RAC Failover 详解
aijuans
oracle
Oracle RAC 同时具备HA(High Availiablity) 和LB(LoadBalance). 而其高可用性的基础就是Failover(故障转移). 它指集群中任何一个节点的故障都不会影响用户的使用,连接到故障节点的用户会被自动转移到健康节点,从用户感受而言, 是感觉不到这种切换。
Oracle 10g RAC 的Failover 可以分为3种:
1. Client-Si
- form表单提交数据编码方式及tomcat的接受编码方式
antonyup_2006
JavaScripttomcat浏览器互联网servlet
原帖地址:http://www.iteye.com/topic/266705
form有2中方法把数据提交给服务器,get和post,分别说下吧。
(一)get提交
1.首先说下客户端(浏览器)的form表单用get方法是如何将数据编码后提交给服务器端的吧。
对于get方法来说,都是把数据串联在请求的url后面作为参数,如:http://localhost:
- JS初学者必知的基础
百合不是茶
js函数js入门基础
JavaScript是网页的交互语言,实现网页的各种效果,
JavaScript 是世界上最流行的脚本语言。
JavaScript 是属于 web 的语言,它适用于 PC、笔记本电脑、平板电脑和移动电话。
JavaScript 被设计为向 HTML 页面增加交互性。
许多 HTML 开发者都不是程序员,但是 JavaScript 却拥有非常简单的语法。几乎每个人都有能力将小的
- iBatis的分页分析与详解
bijian1013
javaibatis
分页是操作数据库型系统常遇到的问题。分页实现方法很多,但效率的差异就很大了。iBatis是通过什么方式来实现这个分页的了。查看它的实现部分,发现返回的PaginatedList实际上是个接口,实现这个接口的是PaginatedDataList类的对象,查看PaginatedDataList类发现,每次翻页的时候最
- 精通Oracle10编程SQL(15)使用对象类型
bijian1013
oracle数据库plsql
/*
*使用对象类型
*/
--建立和使用简单对象类型
--对象类型包括对象类型规范和对象类型体两部分。
--建立和使用不包含任何方法的对象类型
CREATE OR REPLACE TYPE person_typ1 as OBJECT(
name varchar2(10),gender varchar2(4),birthdate date
);
drop type p
- 【Linux命令二】文本处理命令awk
bit1129
linux命令
awk是Linux用来进行文本处理的命令,在日常工作中,广泛应用于日志分析。awk是一门解释型编程语言,包含变量,数组,循环控制结构,条件控制结构等。它的语法采用类C语言的语法。
awk命令用来做什么?
1.awk适用于具有一定结构的文本行,对其中的列进行提取信息
2.awk可以把当前正在处理的文本行提交给Linux的其它命令处理,然后把直接结构返回给awk
3.awk实际工
- JAVA(ssh2框架)+Flex实现权限控制方案分析
白糖_
java
目前项目使用的是Struts2+Hibernate+Spring的架构模式,目前已经有一套针对SSH2的权限系统,运行良好。但是项目有了新需求:在目前系统的基础上使用Flex逐步取代JSP,在取代JSP过程中可能存在Flex与JSP并存的情况,所以权限系统需要进行修改。
【SSH2权限系统的实现机制】
权限控制分为页面和后台两块:不同类型用户的帐号分配的访问权限是不同的,用户使
- angular.forEach
boyitech
AngularJSAngularJS APIangular.forEach
angular.forEach 描述: 循环对obj对象的每个元素调用iterator, obj对象可以是一个Object或一个Array. Iterator函数调用方法: iterator(value, key, obj), 其中obj是被迭代对象,key是obj的property key或者是数组的index,value就是相应的值啦. (此函数不能够迭代继承的属性.)
- java-谷歌面试题-给定一个排序数组,如何构造一个二叉排序树
bylijinnan
二叉排序树
import java.util.LinkedList;
public class CreateBSTfromSortedArray {
/**
* 题目:给定一个排序数组,如何构造一个二叉排序树
* 递归
*/
public static void main(String[] args) {
int[] data = { 1, 2, 3, 4,
- action执行2次
Chen.H
JavaScriptjspXHTMLcssWebwork
xwork 写道 <action name="userTypeAction"
class="com.ekangcount.website.system.view.action.UserTypeAction">
<result name="ssss" type="dispatcher">
- [时空与能量]逆转时空需要消耗大量能源
comsci
能源
无论如何,人类始终都想摆脱时间和空间的限制....但是受到质量与能量关系的限制,我们人类在目前和今后很长一段时间内,都无法获得大量廉价的能源来进行时空跨越.....
在进行时空穿梭的实验中,消耗超大规模的能源是必然
- oracle的正则表达式(regular expression)详细介绍
daizj
oracle正则表达式
正则表达式是很多编程语言中都有的。可惜oracle8i、oracle9i中一直迟迟不肯加入,好在oracle10g中终于增加了期盼已久的正则表达式功能。你可以在oracle10g中使用正则表达式肆意地匹配你想匹配的任何字符串了。
正则表达式中常用到的元数据(metacharacter)如下:
^ 匹配字符串的开头位置。
$ 匹配支付传的结尾位置。
*
- 报表工具与报表性能的关系
datamachine
报表工具birt报表性能润乾报表
在选择报表工具时,性能一直是用户关心的指标,但是,报表工具的性能和整个报表系统的性能有多大关系呢?
要回答这个问题,首先要分析一下报表的处理过程包含哪些环节,哪些环节容易出现性能瓶颈,如何优化这些环节。
一、报表处理的一般过程分析
1、用户选择报表输入参数后,报表引擎会根据报表模板和输入参数来解析报表,并将数据计算和读取请求以SQL的方式发送给数据库。
2、
- 初一上学期难记忆单词背诵第一课
dcj3sjt126com
wordenglish
what 什么
your 你
name 名字
my 我的
am 是
one 一
two 二
three 三
four 四
five 五
class 班级,课
six 六
seven 七
eight 八
nince 九
ten 十
zero 零
how 怎样
old 老的
eleven 十一
twelve 十二
thirteen
- 我学过和准备学的各种技术
dcj3sjt126com
技术
语言VB https://msdn.microsoft.com/zh-cn/library/2x7h1hfk.aspxJava http://docs.oracle.com/javase/8/C# https://msdn.microsoft.com/library/vstudioPHP http://php.net/manual/en/Html
- struts2中token防止重复提交表单
蕃薯耀
重复提交表单struts2中token
struts2中token防止重复提交表单
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月12日 11:52:32 星期日
ht
- 线性查找二维数组
hao3100590
二维数组
1.算法描述
有序(行有序,列有序,且每行从左至右递增,列从上至下递增)二维数组查找,要求复杂度O(n)
2.使用到的相关知识:
结构体定义和使用,二维数组传递(http://blog.csdn.net/yzhhmhm/article/details/2045816)
3.使用数组名传递
这个的不便之处很明显,一旦确定就是不能设置列值
//使
- spring security 3中推荐使用BCrypt算法加密密码
jackyrong
Spring Security
spring security 3中推荐使用BCrypt算法加密密码了,以前使用的是md5,
Md5PasswordEncoder 和 ShaPasswordEncoder,现在不推荐了,推荐用bcrpt
Bcrpt中的salt可以是随机的,比如:
int i = 0;
while (i < 10) {
String password = "1234
- 学习编程并不难,做到以下几点即可!
lampcy
javahtml编程语言
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- 架构师之mysql----------------用group+inner join,left join ,right join 查重复数据(替代in)
nannan408
right join
1.前言。
如题。
2.代码
(1)单表查重复数据,根据a分组
SELECT m.a,m.b, INNER JOIN (select a,b,COUNT(*) AS rank FROM test.`A` A GROUP BY a HAVING rank>1 )k ON m.a=k.a
(2)多表查询 ,
使用改为le
- jQuery选择器小结 VS 节点查找(附css的一些东西)
Everyday都不同
jquerycssname选择器追加元素查找节点
最近做前端页面,频繁用到一些jQuery的选择器,所以特意来总结一下:
测试页面:
<html>
<head>
<script src="jquery-1.7.2.min.js"></script>
<script>
/*$(function() {
$(documen
- 关于EXT
tntxia
ext
ExtJS是一个很不错的Ajax框架,可以用来开发带有华丽外观的富客户端应用,使得我们的b/s应用更加具有活力及生命力。ExtJS是一个用 javascript编写,与后台技术无关的前端ajax框架。因此,可以把ExtJS用在.Net、Java、Php等各种开发语言开发的应用中。
ExtJs最开始基于YUI技术,由开发人员Jack
- 一个MIT计算机博士对数学的思考
xjnine
Math
在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进。为什么要深入数学的世界?作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅程。我的导师最初希望我去做的题目,是对appe