- VLSI电路单元的自动布局:全局布局基础介绍
Jaaiko
数学建模算法开源图论matlab
2024年华数杯全国大学生数学建模竞赛B题为:VLSI电路单元的自动布局。本题主要关注的是全局布局问题。学术界针对全局布局的评估模型和优化方法的研究历史悠久。本文借题顺势介绍全局布局的一些重点基础内容和相关工具/资料,以期为对EDA算法设计领域感兴趣、对数学建模感兴趣的人降低研究门槛。VLSI是超大规模集成电路的简称。完成一个VLSI设计的流程十分复杂,包含多种数据格式的转化,其中将逻辑网表转变为
- npm install 太慢?解决方法大揭秘
小柒笔记
npm前端node.js
本文将详细介绍如何解决npminstall命令执行速度慢的问题。文章将涵盖npminstall命令执行慢的原因、优化方法以及实际应用案例。通过本文的学习,读者可以掌握提高npminstall命令执行速度的基本技巧,并在实际项目中得心应手。引言npminstall是Node.js项目开发中的常用命令,用于安装项目依赖。然而,在某些情况下,npminstall命令的执行速度可能会变得非常慢,这可能影响
- 363. 矩形区域不超过 K 的最大数值和(C语言实现)
Buaaer(>ω<)
算法学习-Leetcode动态规划算法二分查找
文章目录363.矩形区域不超过K的最大数值和题干声明方法1-暴力枚举+简单dp方法2-暴力枚举+二维数组前缀和方法3-固定边界搜索方法4-固定边界搜索+dp优化方法5-固定边界搜索+前缀和+二分查找363.矩形区域不超过K的最大数值和本题涉及内容:一/二维前缀和问题、降维问题、暴力枚举问题、dp问题、二分查找问题题干给你一个m∗nm*nm∗n的矩阵matrixmatrixmatrix和一个整数kk
- K-means 算法的介绍与应用
小魏冬琅
matlab算法kmeans机器学习
目录引言K-means算法的基本原理表格总结:K-means算法的主要步骤K-means算法的MATLAB实现优化方法与改进K-means算法的应用领域表格总结:K-means算法的主要应用领域结论引言K-means算法是一种经典的基于距离的聚类算法,在数据挖掘、模式识别、图像处理等多个领域中得到了广泛应用。其核心思想是将相似的数据对象聚类到同一个簇中,而使得簇内对象的相似度最大、簇间的相似度最小
- 打造高效业务架构:价值流在企业转型中的应用指南
The Open Group
大数据数字化转型企业架构师微服务云原生架构
从流程到价值流的业务架构转型随着企业面对数字化转型带来的激烈市场竞争,优化业务架构成为每个企业管理者必须面对的核心挑战。传统的业务流程优化方法往往难以应对复杂的客户需求和日益增加的业务复杂性。《价值流指南》由TheOpenGroup发布的企业数字化转型专业参考材料,系统化介绍了如何定义、分解和映射价值流,以及其在商业架构中的应用,《价值流指南》为企业提供了一种全新的业务优化视角,将焦点从内部流程效
- [01] 动态规划解题套路框架
_魔佃_
本文解决几个问题:动态规划是什么?解决动态规划问题有什么技巧?如何学习动态规划?刷题刷多了就会发现,算法技巧就那几个套路。所以本文放在第一章,来扒一扒动态规划的裤子,形成一套解决这类问题的思维框架,希望能够成为解决动态规划问题的一部指导方针。本文就来讲解该算法的基本套路框架,下面上干货。labuladong的算法小抄首先,动态规划问题的一般形式就是求最值。动态规划其实是运筹学的一种最优化方法,只不
- Matlab实现BP-NSGA-II多目标预测优化方法
含老司开挖掘机
本文还有配套的精品资源,点击获取简介:本文涉及将遗传算法优化的BP神经网络与NSGA-II相结合,应用于多目标预测问题的解决。主要内容包括BP神经网络的学习原理、适应度函数的设计与应用、NSGA-II在多目标优化中的作用、多目标预测的策略以及Matlab工具在算法实现中的使用。本文旨在通过这些技术,帮助读者构建出能在多个相互冲突的目标间取得平衡的优化解决方案,并提供完整的Matlab代码实现,以供
- WebView交互架构项目实战(三),史上超级详细
m0_66264881
程序员架构移动开发android
returnsplashTargetPath+“/”;}***1:常用JS本地化及延迟加载*******资源等文件(不需要更新)本地存储,在需要的时候直接从本地获取。哪些资源需要我们去存储在本地呢,当然是一些不会被更新的资源,例如图片文件,js文件,css文件,比预加载更粗暴的优化方法是直接将常用的JS脚本本地化,直接打包放入apk中。比如H5页面获取用户信息,设置标题等通用方法,就可以直接写入一
- 基于深度学习的结构优化与生成
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的结构优化与生成技术应用于多种领域,例如建筑设计、机械工程、材料科学等。该技术通过使用深度学习模型分析和优化结构形状、材料分布、拓扑结构等因素,旨在提高结构性能、减少材料浪费、降低成本、并加快设计流程。1.结构优化与生成的核心概念结构优化:涉及通过调整结构设计参数(如形状、材料、厚度等)来改善其特定性能指标,如强度、刚度、重量、成本或安全性。传统的优化方法依赖于数值仿真和数学优化算法,
- 如何在Java中实现高效的分布式梯度下降算法
省赚客app开发者
java分布式算法
如何在Java中实现高效的分布式梯度下降算法大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!在本文中,我们将探讨如何在Java中实现高效的分布式梯度下降算法。分布式梯度下降(DistributedGradientDescent)是一种常用于训练大规模机器学习模型的优化方法,特别是在处理大规模数据集时非常有效。本文将介绍如何设计和实现这一算法,以提高训练效率。分布式梯度
- 最优化方法Python计算:一元函数搜索算法——二分法
戌崂石
最优化方法最优化方法python
设一元目标函数f(x)f(x)f(x)在区间[a0,b0]⊆R[a_0,b_0]\subseteq\text{R}[a0,b0]⊆R(其长度记为λ\lambdaλ)上为单峰函数,且在(a0,b0)(a_0,b_0)(a0,b0)内连续可导,即其导函数f′(x)f'(x)f′(x)在(a0,b0)(a_0,b_0)(a0,b0)内连续。在此增强的条件下,可以加速迭代计算压缩区间的过程。仍然设置计算精
- Python(TensorFlow)和Java及C++受激发射损耗导图
亚图跨际
Python交叉知识算法去噪预测算法聚焦荧光团伪影消除算法囊泡动力学自动化多尺度统计物距
要点神经网络监督去噪预测算法聚焦荧光团和检测模拟平台伪影消除算法性能优化方法自动化多尺度囊泡动力学成像生物研究多维分析统计物距粒子概率算法Python和MATLAB图像降噪算法消除噪声的一种方法是将原始图像与表示低通滤波器或平滑操作的掩模进行卷积。例如,高斯掩模包含由高斯函数确定的元素。这种卷积使每个像素的值与其相邻像素的值更加协调。一般来说,平滑滤波器将每个像素设置为其自身及其附近相邻像素的平均
- HiveSQL一本通 - 案例实操,2024年最新大数据开发编程基础班
疯狂的石头。
程序员大数据
count(stu_id)stu_countfromscore_infogroupbycourse_idhavingstu_count>=15;(3)查询结果。course_idstu_count0119021903196.3.4查询结果排序和分组指定条件1.查询学生的总成绩并按照总成绩降序排序(1)思路分析。本题主要考查分组聚合和orderby关键字的使用。(2)查询语句。hive>select
- 第十七章 总结与延申:从无心讹传到洞若观火
张小邪倒斗中
《收获不止SQL优化》笔记oracle数据库sql
参考《收获,不止SQL优化》作者:梁敬彬/梁敬弘质疑探索比学习更重要!!!一、网上的优化方法,有些是错的,有些已过时,要自己动手验证过。所以构造环境,出验证脚本,就要仔细思考如何才能得到尽量准确的试验结果。(比如保证数据量,不统计首次执行的硬解析时间、多次执行取平均值对比效率等等)二、只要你觉得不流畅,用户体验不好,都是有问题的。有些是提供的方法本身就不是最佳的,有些高版本已经做过优化了,有些确实
- Hive SQL基础及优化
蓝棠
SQLhivesqlbigdata
SQLSQLSQL基础语法基本含义(与excel对应)数据来源HiveSQL查询语法单表查询语法和使用1,select2,groupby*3,聚合函数4.行转列5,join6,Hive分析/窗口函数7,HiveSQL怎么写7.1*找出5月新用户数>10w的日期**7.2找出7.2号新客,在7.3-7.10仍活跃的用户数*8,开发限制和建议SQL常用函数优秀SQLer的进阶常用函数介绍与应用一、基础
- tomcat 配置java启动参数配置_tomcat常用配置详解和优化方法
徐聪瓜要努力
tomcat配置java启动参数配置
tomcat常用配置详解和优化方法参考:http://blog.csdn.net/zj52hm/article/details/51980194http://blog.csdn.net/wuliu_forever/article/details/52607177https://www.cnblogs.com/dengyungao/p/7542604.htmlhttps://www.cnblogs.
- Unity3D 屏幕空间阴影的简单优化详解
Clank的游戏栈
人工智能算法
在Unity3D中,阴影是提升场景真实感的重要元素之一。然而,传统的阴影映射技术(ShadowMapping)可能会因为计算量大而导致性能问题。屏幕空间阴影(ScreenSpaceShadows,SSS)技术提供了一种更高效的阴影生成方式,特别是在现代图形硬件上。本文将详细介绍屏幕空间阴影的基本原理、优化方法以及代码实现。对惹,这里有一个游戏开发交流小组,希望大家可以点击进来一起交流一下开发经验呀
- 【AI大模型应用开发】1.2 Prompt Engineering(提示词工程)- 站在巨人的肩膀上,超实用!常用提示词整理
AI-入门
prompt深度学习人工智能chatgptagi
通过上两篇文章我们学习和实践了Prompt的书写要素、原则与技巧,以及了解了一些进阶的优化方法。本来今天是想收集一些网上比较好的Prompt提示词,来与大家共同学习下别人的书写方式,吸取别人的经验,对Prompt有个更深入的理解。但是发现这有点不太好,直接copy别人的东西,附个链接有点枯燥,大家看起来也比较懵。并且网上专门收集Prompt的文档和网站也有很多,我就不在这里班门弄斧了。对于想看各类
- python读取hive数据库_利用pyhive将hive查询数据导入到mysql
weixin_39939668
python读取hive数据库
在大数据工作中经常碰到需要将hive查询数据导入到mysql的需求,常见的方法主要有两种,一是sqoop,另一种则是pyhive。本文主要讲的就是python的pyhive库的安装与使用。pyhive作用远程连接hive数据库,运行hivesql,而不需要登录到安装有hive的服务器上去可以更方便处理更多连续命令,可以封装一些经常需要复用的命令脚本化,不需要编译,随时改,随时执行看结果方便对hiv
- SQL调优——调优技巧
码说芯语
#性能优化#关系型数据库sql数据库
文章目录1、查看真实的基数(Rows)2、使用UNION代替OR3、分页语句优化思路3.1、单表分页优化思路3.2、多表关联分页优化思路4、使用分析函数优化自连接5、超大表与超小表关联优化方法6、超大表与超大表关联优化方法7、LIKE语句优化方法8、DBLINK优化9、对表进行ROWID切片10、SQL三段分拆法1、查看真实的基数(Rows)执行计划中的Rows是假的,是CBO根据统计信息和数学公
- 探索C++编程技巧:计算两个字符串的最长公共子串
清水白石008
C++C++题库面试试题c++代理模式开发语言
探索C++编程技巧:计算两个字符串的最长公共子串在C++面试中,考官通常会关注候选人的编程能力、问题解决能力以及对C++语言特性的理解。一个常见且经典的问题是计算两个字符串的最长公共子串(LongestCommonSubstring,LCS)。本文将详细介绍如何编写一个函数来解决这个问题,并深入探讨相关的编程技巧和优化方法。目录引言问题描述解决思路实现步骤基础实现动态规划优化代码示例复杂度分析总结
- 人工智能&机器学习&深度学习
AA杂货铺111
机器学习:一切通过优化方法挖掘数据中规律的学科。深度学习:一切运用了神经网络作为参数结构进行优化的机器学习算法。强化学习:不仅能利用现有数据,还可以通过对环境的探索获得新数据,并利用新数据循环往复地更新迭代现有模型的机器学习算法。学习是为了更好地对环境进行探索,而探索是为了获取数据进行更好的学习。深度强化学习:一切运用了神经网络作为参数结构进行优化的强化学习算法。人工智能定义与分类人工智能(Art
- 遗传进化算法进行高效特征选择
广东数字化转型
算法人工智能
在构建机器学习模型时,特征选择是一个关键的预处理步骤。使用全部特征往往会导致过拟合、增加计算复杂度等问题。因此,我们需要从原始特征集中选择一个最优子集,以提高模型的泛化性能和效率。特征选择的目标是找到一个二元掩码向量,对应每个特征的保留(1)或剔除(0)。例如,对于10个特征,这个掩码向量可能是[1,0,1,1,0,0,1,0,1,0]。我们需要通过某种优化方法,寻找一个使目标函数(如模型的贝叶斯
- 数学建模强化宝典(2)linprog
IT 青年
建模强化栈数学建模编程linprog
一、介绍linprog是MATLAB中用于解决线性规划问题的函数。线性规划是一种优化方法,它尝试在满足一组线性等式或不等式约束的条件下,找到一个线性目标函数的最大值或最小值。linprog函数适用于求解形如以下问题的线性规划问题:minimizecTxsubjecttoAx≤bAeqx=beqlb≤x≤ub其中:c是目标函数的系数向量。x是优化变量向量。A和b定义了不等式约束Ax≤b。Aeq和be
- 网站建设完成后, 做seo必须知道的专业知识之--黑帽SEO
博洋科技
seo白帽seoseo
黑帽SEO是指通过不道德或不公平的手段,试图提高网站在搜索引擎中的排名。下面将详细探讨黑帽SEO的各个方面:定义与原理定义概述:黑帽SEO涉及使用作弊策略和技巧,目的在于快速提升网站的搜索引擎排名,而非通过正当的优化方法。工作原理:黑帽SEO绕过搜索引擎的正常使用条款,利用算法的漏洞和弱点,达到快速但短暂的高排名效果。常见手法与案例关键词堆积:在网页内容中过度重复关键词,以误导搜索引擎关于网页的主
- 【XR】优化SLAM SDK的稳定性
大江东去浪淘尽千古风流人物
xr
优化SLAMSDK的稳定性是确保增强现实(AR)和虚拟现实(VR)应用在各种环境和设备上都能稳定运行的关键。以下是一些主要的优化方法:1.传感器融合优化方法:将多个传感器的数据(如摄像头、加速度计、陀螺仪、磁力计)进行融合,以补偿单一传感器可能存在的误差。优势:提高了环境理解的准确性,减少了由于单一传感器误差导致的抖动和漂移现象。实例:ARKit和ARCore都利用了传感器融合技术来增强稳定性。2
- hivesql 练习3
小涛手记
hivehivesql大数据
--源表name,subjectid,age,score张三,0001,22,45张三,0002,22,56李四,0002,18,88赵五,0002,24,66--目标表(科目0001没有成绩的学生name和age)name,age李四,18赵五,24createtablescore_t(namestring,subjectidstring,agestring,scorestring)ROWFOR
- hivesql练习
小涛手记
hivehivesql
源表:province,province_id,city,city_id,area,area_id甘肃省,11,张掖市,21,甘州区,31甘肃省,11,张掖市,21,山丹县,32甘肃省,11,张掖市,21,高台县,33甘肃省,11,兰州市,22,七里河,34甘肃省,11,兰州市,22,新区,35北京,12,北京,12,海淀区,36北京,12,北京,12,昌平区,37目标表:+------+----
- 大模型训练优化方法
少喝冰美式
人工智能大语言模型ai大模型大模型应用LLM大模型训练计算机技术
写在前面在训练模型尤其是大模型的时候,如何加快训练速度以及优化显存利用率是一个很关键的问题。本文主要参考HF上的一篇文章:https://huggingface.co/docs/transformers/perf_train_gpu_one,以及笔者在实际训练中的一些经验,给出一些比较实用的方法。先看一个总览的表:方法加快训练速度优化显存利用率BatchsizechoiceYesYesGradie
- 智能优化特征选择|基于鹦鹉优化(2024年新出优化算法)的特征选择(分类器选用的是SVM)研究Matlab程序 【优化算法可以替换成其他优化方法】
机器不会学习CL
智能优化算法智能优化特征选择算法支持向量机matlab
智能优化特征选择|基于鹦鹉优化(2024年新出优化算法)的特征选择(分类器选用的是SVM)研究Matlab程序【优化算法可以替换成其他优化方法】文章目录一、PO基本原理基本原理基本流程示例应用二、实验结果三、核心代码四、代码获取五、总结智能优化特征选择|基于鹦鹉优化(2024年新出优化算法)的特征选择(分类器选用的是SVM)研究Matlab程序【优化算法可以替换成其他优化方法】一、PO基本原理鹦鹉
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam