- 03-1.python爬虫-爬虫简介
执着的小火车
python入门到项目实践爬虫pythonhttp
03-1.python爬虫-爬虫简介简介Python爬虫是一种使用Python编程语言编写的程序,用于自动从互联网上获取网页数据。它可以模拟人类浏览器的行为,发送HTTP请求到目标网站,获取网页的HTML内容,然后通过解析HTML提取所需的数据,如文本、图片链接、表格数据等。爬虫的应用广泛,比如在数据挖掘领域,可收集大量数据用于分析趋势和模式;在信息聚合方面,能将不同网站的特定信息汇总到一处;还可
- 03-2.python爬虫-Python爬虫基础(一)
执着的小火车
python入门到项目实践爬虫python开发语言
HTTP基本原理HTTP(HyperTextTransferProtocol),即超文本传输协议,是互联网通信的关键所在。它作为应用层协议,构建于可靠的TCP协议之上,保障了数据传输的稳定与可靠,犹如网络世界的“交通规则”,规范着客户端与服务器之间的数据往来。HTTP的请求响应过程是其核心机制。当用户在浏览器中输入一个URL并按下回车键,浏览器就会作为客户端向服务器发送HTTP请求。请求由请求行、
- 【大模型应用开发 动手做AI Agent】Plan and Solve策略的提出
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
【大模型应用开发动手做AIAgent】Plan-and-Solve策略的提出关键词:大模型,AIAgent,Plan-and-Solve,智能体,策略学习,强化学习,自然语言处理1.背景介绍随着人工智能技术的飞速发展,大模型(LargeLanguageModel,LLM)在自然语言处理(NaturalLanguageProcessing,NLP)领域取得了显著的突破。大模型能够理解和生成自然语言,
- 01.双Android容器解决方案
高桐@BILL
容器Android
目录写在前面一,容器1.1容器的原理1.1.1Namespace1.1.2Cgroups(ControlGroups)1.1.3联合文件系统(UnionFileSystem)1.2容器的应用1.2.1微服务架构1.2.2持续集成和持续部署(CI/CD)1.2.3多租户环境1.2.4混合云和多云环境1.2.5大数据和机器学习1.2.6android应用场景1.3容器方案选型1.3.1Docker1.
- 监控易:智慧高校一体化综合运维解决方案
MXsoft618
运维信息安全物联网监控类
新冠疫情发生以来,线上线下教育模式的初探,促使学校、家长和社会对于教育信息化认识产生巨大的转变。伴随着云计算和物联网的发展,教育已经开启了一个全新的时代。自“十三五”规划中明确提出“支持各级各类学校建设智慧校园,综合利用互联网、大数据、人工智能和虚拟现实技术探索未来教育教学新模式”以来,政策春风也不断加码教育信息化进程,《教育信息化2.0行动计划》以及《智慧校园总体框架》的相继发布,全国各地都在积
- 私有化一键部署整体方案
维搭小刘
架构运维
背景我们的客户主要是国企、央企或者科技公司,绝大多数情况下,都是需要将星云平台进行私有化部署。此前,在星云平台整体架构一文中,我详细介绍了平台是基于微服务架构设计的,这种架构带来了许多灵活性和扩展性优势,但也给私有化部署带来了不小的挑战。尤其是在私有化部署的过程中,如何确保各个服务版本的兼容性、如何确保不同服务之间的配置和代码的一致性,成为了必须解决的核心问题。为了应对这些挑战,我们需要实现清晰的
- 专业技术计算机应用能力考试ppt2007,全国专业技术人员计算机应用能力考试系列教材——PowerPoint 2003中文演示文稿...
Bloodysteve
全国专业技术人员计算机应用能力考试系列教材——PowerPoint2003中文演示文稿语音编辑锁定讨论上传视频全国专业技术人员计算机应用能力考试系列教材——PowerPoint2003中文演示文稿,由机械工业出版社出版,随书所带光盘《天宇考王》职称计算机考试专用软件。书名全国专业技术人员计算机应用能力考试系列教材——PowerPoint2003中文演示文稿别名PowerPoint2003中文演示文
- TDengine 做为 FLINK 数据源技术参考手册
TDengine (老段)
tdengineflink大数据涛思数据时序数据库数据库
ApacheFlink是一款由Apache软件基金会支持的开源分布式流批一体化处理框架,可用于流处理、批处理、复杂事件处理、实时数据仓库构建及为机器学习提供实时数据支持等诸多大数据处理场景。与此同时,Flink拥有丰富的连接器与各类工具,可对接众多不同类型的数据源实现数据的读取与写入。在数据处理的过程中,Flink还提供了一系列可靠的容错机制,有力保障任务即便遭遇意外状况,依然能稳定、持续运行。借
- Hadoop HA 架构
weixin_30569033
shell大数据
为什么要用集群?企业里面,多台机器伪分布式每一个角色都是一个进程HDFS:NNSNNDNYARN:RMNM大数据所有组件,都是主从架构master-slaveHDFS读写请求都是先到NN节点,但是,HBase读写请求不是经过master,建表和删除表是需要经过masterNN节点挂了,就不能提供对外服务(-put,-get)需要配置两个NN节点(实时的,任何时刻只有一台active对外,另外一台是
- AI 计算的未来:去中心化浪潮与全球竞争格局重塑
智识微光Intelligence
人工智能机器学习大数据
引言人工智能(AI)正以前所未有的速度发展,尤其是大模型训练和推理效率的提升,使得AI计算成本迅速下降,呈现出向去中心化演进的趋势。最新的DeepSeekr1模型,以仅600万美元的训练成本,达到了OpenAIo1级别的性能,表明AI技术正迈向更具普惠性的阶段。这一趋势不仅对AI产业格局产生深远影响,还将改变计算基础设施、全球科技竞争力分布,甚至可能影响人工超级智能(ASI)的未来发展。因此,AI
- 守护每一比特的安全——探索基于差分隐私的MySQL数据脱敏之道
墨夶
数据库学习资料2安全mysql数据库
在当今数字化时代,随着互联网和大数据技术的发展,数据的价值愈发凸显。然而,随之而来的个人隐私泄露风险也日益增加,成为社会广泛关注的问题之一。特别是在医疗、金融等领域,如何既能充分利用海量数据资源推动行业发展,又能有效保护用户隐私不被侵犯,成为了亟待解决的重要课题。本文将深入探讨一种创新的数据安全共享方案——基于差分隐私(DifferentialPrivacy,DP)的MySQL数据库实现方法,旨在
- AIGC时代的Vue或React前端开发
GISer_Jinger
JavascriptReactVueAIGCvue.jsreact.js
在AIGC(人工智能生成内容)时代,Vue开发正经历着深刻的变革。以下是对AIGC时代Vue开发的详细分析:一、AIGC技术对Vue开发的影响代码生成与自动化AIGC技术使得开发者能够借助智能工具快速生成和优化Vue代码。例如,通过自然语言处理模型(如ChatGPT),开发者可以描述组件的功能和样式需求,然后自动生成包含模板、脚本和样式的完整组件代码。这不仅大大提高了开发效率,还减少了人为错误的可
- 一文带你了解Linux中部署Redis主从复制,主从复制原理
小满只想睡觉
linuxredis后端
本文谈到的内容主要是以下几点:如何部署Redis主从复制(一主二从)一些关于主从的问题模拟和思考主从复制原理和工作流程前文所谓主从复制,就是以其中一台机器作为master,并且以写为主,其他从服务器(Slave)则是以读为主,达到读写分离的效果,以来提高系统性能。从服务器的数据全部从主服务中复制同步而来。当master数据变化的时候,自动将新的数据异步同步到其他Slave数据库redis官方文档:
- AIGC产品数字人 –【字形绘梦】之绘声
拉达曼迪斯II
AI创业WebRTCAIGC学习人工智能音视频AIGCSD数字人微信小程序字形绘梦
最近开始发一些AIGC相关的学习博客,期间用到的RamendeusStudio公司的一款免费图文生成微信小程序【字形绘梦】还是不错。关键是免费。最近貌似它们新增了一个语音还是视频的能力叫【绘声】,简单的试用之后觉得还行,给大家分享下先上效果:PT3-11绘文模块使用方法:打开主界面,点选角色或者自定义图片,选择默认文案或者字形输入,点击生成。完成后微信会自动通知你制作完成,点击过去查看即可。它的绘
- 大模型蒸馏与大模型微调技术有啥差别?
kcarly
大模型知识乱炖杂谈大模型蒸馏大模型微调大模型AI
大模型蒸馏与大模型微调是当前人工智能领域中两种重要的技术手段,它们在模型优化、性能提升和资源利用方面各有特点。以下将从定义、技术原理、应用场景及优缺点等方面对这两种技术进行深入对比。一、定义与基本概念大模型蒸馏(KnowledgeDistillation)蒸馏是一种将大型复杂模型(教师模型)的知识迁移到小型模型(学生模型)的技术。通过训练学生模型模仿教师模型的行为,实现模型压缩和性能保留的目标。蒸
- DeepSeek大模型技术深度解析:揭开Transformer架构的神秘面纱
不一样的信息安全
网络杂烩AIDeepSeek
摘要DeepSeek大模型由北京深度求索人工智能基础技术研究有限公司开发,基于Transformer架构,具备卓越的自然语言理解和生成能力。该模型能够高效处理智能对话、文本生成和语义理解等复杂任务,标志着人工智能在自然语言处理领域的重大进展。关键词DeepSeek模型,Transformer架构,自然语言,智能对话,文本生成,语义理解一、DeepSeek大模型的架构解析1.1DeepSeek大模型
- 《DeepSeek-R1 问世,智能搜索领域迎来新变革》
黑金IT
智能搜索
DeepSeek-R1是由DeepSeek公司开发的一款创新型人工智能模型,自2024年5月7日发布以来,迅速在AI领域引起广泛关注。该模型凭借其卓越的语言理解能力、高效的数据处理能力、自适应学习能力、高安全性与可靠性以及广泛的应用场景与拓展性,在众多人工智能模型中脱颖而出。DeepSeek-R1的核心特点强大的语言理解能力:DeepSeek-R1采用先进的深度学习算法,能够精准解析复杂的语义结构
- SpringBoot+Vue.js协同过滤算法美食推荐小程序
wqq_992250277
javajava
摘要伴随着我国社会的发展,人民生活质量日益提高。于是对各种需求进行规范而严格是十分有必要的,所以许许多多的微信小程序应运而生。此时单靠人力应对这些事务就显得有些力不从心了。所以本论文将设计一套协同过滤算法美食推荐小程序,帮助美食推荐进行美食分类、美食信息、订单信息等繁琐又重复的工作,提高工作效率的同时,也减轻了管理者的压力。本论文的主要内容包括:第一,研究分析当下主流的Uni-weixin技术,结
- AI绘画关键词(咒语)分析与热点研究
集eee
AI作画midjourneychatgpt人工智能prompttext2imgstablediffusion
语义文本图像生成技术关键词分析与热点研究一、研究背景与研究意义随着深度学习的发展,语义文本到图像的生成技术已经取得长足进步,AI绘画也因此快速崛起。只需输入关键词,AI系统就能自动生成符合语义描述的图像,这一技术的出现,使绘画的创作方式发生革命性变化。目前主流的AI绘画模型有Midjourney、Stablediffusion和文心一格等,其使用方式多为输入一段含有图片描述的“prompt(指令)
- Python 爬虫实战:在马蜂窝抓取旅游攻略,打造个性化出行指南
西攻城狮北
python爬虫旅游开发语言实战案例
一、引言二、准备工作(一)安装必要的库(二)分析网页结构三、抓取攻略列表信息(一)发送请求获取网页内容(二)解析网页提取攻略信息(三)整合代码获取攻略列表四、抓取单个攻略详情信息(一)发送请求获取攻略详情页面内容(二)解析网页提取攻略详情信息(三)整合代码获取攻略详情五、数据存储(一)存储到CSV文件(二)存储到数据库(以SQLite为例)六、注意事项(一)遵守法律法规和平台规定(二)应对反爬虫机
- 构建高效LLM应用开发架构的关键策略
AI天才研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
文章标题:构建高效LLM应用开发架构的关键策略在当今快速发展的技术世界中,人工智能(AI)已经成为推动创新的核心动力。其中,大型语言模型(LLM)的应用开发尤为引人注目。LLM通过处理和理解自然语言,为各种场景提供了强大的智能解决方案,从智能客服到内容生成,再到教育应用,都有着广泛的应用前景。然而,高效地构建LLM应用开发架构面临着诸多挑战,包括性能、可扩展性和安全性等。本文将深入探讨构建高效LL
- 12.udp
就很对
udp网络协议网络
12.udp**1.UDP特性****2.UDP编程框架(C/S模式)****3.UDP发送接收函数****4.UDP编程练习**1.UDP特性连接特性:无链接,通信前无需像TCP那样建立连接。可靠性:不可靠,不保证数据按序到达、不保证数据无丢失或重复。数据传输:适合传输大数据,但实际传输受网络MTU等因素限制。2.UDP编程框架(C/S模式)服务器端流程:创建套接字:调用socket()函数,参
- 爬虫守则--写爬虫,不犯法
Erfec
玩爬虫,技术当然是中立的,浏览了因为爬虫被捕入狱的案例,自己总结了如下爬虫守则,不吃牢饭!1、爬虫速度不要太快,不要给对方服务器造成太大压力2、爬虫不要伪造VIP,绕过对方身份验证,你可以真的买一个VIP做自动化,这没问题3、公民个人信息不要去碰4、爬取的数据不能用于盈利5、爬虫是模拟人,不要做人不能做到的事情
- 第03课:Anaconda 与 Jupyter Notebook
红色石头Will
深度学习PyTorch极简入门人工智能深度学习PyTorch
本文将为大家介绍深度学习实战非常重要的两个工具:Anaconda和JupyterNotebook。Anaconda为什么选择Anaconda我们知道Python是人工智能的首选语言。为了更好、更方便地使用Python来编写深度学习相关程序,可以使用集成开发环境或集成管理系统,最流行的比如PyCharm和Anaconda。本文我推荐使用Anaconda。之所以选择Anaconda,是因为Anacon
- AI大模型在智能客服系统中的应用
季风泯灭的季节
AI大模型应用技术二人工智能
目录引言1.基于大模型的智能客服系统架构2.对话生成与上下文管理对话生成上下文管理3.提高客服系统响应精度的策略1.使用专门训练的数据集2.引入实体识别和意图分类3.反馈循环和持续优化4.AI大模型在企业中的优化与调优策略1.模型微调(Fine-tuning)2.模型蒸馏(ModelDistillation)3.响应延迟优化4.持续监控与反馈结论引言随着人工智能(AI)技术的不断发展,AI大模型在
- Python程序员爬取大量视频资源,最终面临刑期2年的惩罚!
夜色恬静一人
python爬虫开发语言Python
Python程序员爬取大量视频资源,最终面临刑期2年的惩罚!近日,一名Python程序员因为涉嫌大规模爬取视频资源而被判处2年有期徒刑。这个案例引起了广泛的关注,也引发了对于网络爬虫合法性和道德问题的讨论。据了解,这名程序员利用Python编程语言开发了一套自动化爬虫工具,通过抓取网站上的视频链接,批量下载了超过13万部视频资源。这些资源包括电影、电视剧以及其他各种类型的视频内容。然而,尽管他成功
- 深度学习(DL/ML)学习路径
jackl的科研日常
深度学习学习人工智能
最近几年,尤其是自从2016年AlphaGo打败李世石事件后,人工智能技术受到了各行业极大关注。其中以机器学习技术中深度学习最受瞩目。主要原因是这些技术在科研领域和工业界的应用效果非常好,大幅提升了算法效率、降低了成本。因而市场对相关技术有了如此大的需求。我在思考传统行业与这些新兴技术结合并转型的过程中,亦系统的回顾了深度学习及其相关技术。本文正是我在学习过程中所作的总结。我将按照我所理解的学习路
- 【大数据入门核心技术-Hive】(十一)HiveSQL数据分区
forest_long
大数据技术入门到21天通关大数据hivehadoop数据仓库hdfs
目录一、分区的概念二、创建分区1)静态分区1、单分区测试2、多分区测试2)动态分区3、动态分区和静态分区混合使用三、分区的其它操作1、恢复分区2、归档分区3、交换分区四、分区数据查询1、单分区数据查询2、多分区数据查询方法1:通过union方法2:通过or一、分区的概念数据分区的概念以及存在很久了,通常使用分区来水平分散压力,将数据从物理上移到和使用最频繁的用户更近的地方,以及实现其目的。hive
- Python 爬虫实战案例 - 获取拉勾网招聘职位信息
西攻城狮北
python爬虫拉勾网招聘信息
引言拉勾网,作为互联网招聘领域的佼佼者,汇聚了海量且多样的职位招聘信息。这些信息涵盖了从新兴科技领域到传统行业转型所需的各类岗位,无论是初出茅庐的应届生,还是经验丰富的职场老手,都能在其中探寻到机遇。对于求职者而言,能够快速、全面地掌握招聘职位的详细情况,如薪资待遇的高低、工作地点的便利性、职位描述所要求的技能与职责等,无疑能在求职路上抢占先机。而企业方,通过分析同行业职位信息的发布趋势、薪资水平
- 考公必知!中国古代文化常识大汇总
张小小大智慧
行测
考公人们都知道,行测常识判断里,中国古代文化常识可是常考内容。这些知识点不仅能帮你在笔试中多拿分,在面试时也能让你脱颖而出,展现深厚的文化底蕴。今天就来给大家系统梳理一下,建议点赞收藏,方便随时复习!一、中国古代艺术书法从殷商甲骨文开始,中国书法就踏上了它的历史征程。甲骨文刻在龟甲兽骨上,笔画刚硬,是古人占卜记事的载体。到了商周,金文盛行,铸刻在青铜器上,线条圆润,结构规整,庄重感十足。春秋战国时
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,